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Abstract: We prove the existence and the regularity of minima for funct ional whose
prototype is:

J (u) =
Z




jr ujp

(1 + juj) �p
dx �

Z



F:r u dx; u 2 W 1;p

0 (
) ;

where 
 is a bounded domain of IR N ; p > 1 and � > 0. The function F belongs to
some Lebesgue space.

Keywords: non-linear elliptic equations; degenerate coercive truncations; calculus
of variations.

Mathematics Subject Classi�cation (2010): 35J60, 35J70, 46E35, 35B45.

1 Introduction and Statement of Results

In this paper, we deal with the study of minima for functional whose prototype is:

J (u) =
Z




jr ujp

(1 + juj)�p dx �
Z



F:r u dx; u 2 W 1;p

0 (
) ; (1.1)

where 
 is a bounded open subset ofIR N ; N � 2; � > 0, and and 1 < p < N . The
datum F belongs to the space (L r (
)) N for somer � 1:
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The search of su�cient condition to secure that the functional J (u) =Z



a(x; u; r u) dx attained an extreme value has a long history (see B. Dacorogna [8]). R.

Tahraoui, A. Cellina and S. Perrotta in [6,12] prove that the functional J admits a unique
minimum, without any assumptions on a, except for the lower semi-continuity and the
growth condition. Landes in [10] has shown that ifJ is weakly lower semi-continuous at
one �xed level set, then this level set is an extreme value ofJ or the de�ning a is convex
in the gradient.

The functional J (see (1.1)) is de�ned onW 1;p
0 (
), when r � p0, but it may not be

coercive on the same space asu becomes large (see Example 3.3 of [3]). Thus even ifJ
is lower semi-continuous on W 1;p

0 (
) as a consequence of the De Giorgi theorem, the
lack of coerciveness implies thatJ may not attain its minimum on W 1;p

0 (
) even in
the case in whichJ is bounded from below (see Example 3.2 of [3]). To overcome this
di�culty we will reason (as in [3]) by extending the functional J to W 1;q

0 (
) for some
q < p depending on� . Thus functional attains its minimum on this larger space when
r � q0. In the same way we cite the recent works of Boccardo and Orsina [1,2].

In this paper, we will prove several results of existence and regularity of minima
(depending on the summability of the datum F ) for functional J .

Let us give the precise assumptions on the problem that we will study. Let 
 be a
bounded open subset ofIR N ; N � 2: Let 1 < p < N; and let a : 
 � IR N ! IR be a
Caratheodory function (that is, a(:; t) is measurable on 
 for every t 2 IR , and a(x; :) is
continuous on IR for almost every x in 
), such that the following assumption

� 0

(1 + jt j)�p � a(x; t ) � � 1 (1.2)

for almost every x in 
, for every t in IR where �; � 0 and � 1 are positive constants. We
furthermore suppose that:

0 < � <
1
p0: (1.3)

The function F is such that:

jF j 2 L r (
) for some r � p0: (1.4)

Example of the function a that satis�es (1 :2) is:

a(x; t ) =
� 0

(b(x) + jt j)�p ;

where b is a measurable function on 
 such that:

0 < � 2 � b(x) � � 3 for almost everywhere in 
 ; (1.5)

where � 2 and � 3 are two positive constants.
Similar problems have been considered in [3], more precisely the authors have studied

the existence and the regularity of minima for functional:

I (u) =
Z



a(x; u)jr ujp dx �

Z



f:u dx; u 2 � > 0; (1.6)
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where f belongs toL r (
) for some r � p0: The following regularity was proved in [3] in
light of various summability of the source term

r >
r
p

) u 2 W 1;p
0 (
) \ L 1 (
) ;

�
p�

1 + �p

� 0

� r <
r
p

) u 2 W 1;p
0 (
) \ L s(
) ;

(p� (1 � � )) 0 � r <
�

p�

1 + �p

� 0

) u 2 W 1;�
0 (
) \ L s(
) ;

where

s =
Nr (p(1 � � ) � 1)

N � rp
; � =

Nr (p(1 � � ) � 1)
N � r (1 + �p )

:

Following this way, in this paper, we are interested in the existence and the regularity of
minima for functional J (v):

Notations :
In the sequel we will use the following functions of a real variable depending on a

parameter k > 0 :

Tk (s) = max( � k; min(k; s)) ; Gk (s) = s � Tk (s): (1.7)

Furthermore, we will denote by c or c1; c2; :::::; various constants which may depend on
the data of the problem, whose value may vary from line to line.

If 1 < � < N , we denote by� � = N�
N � � the Sobolev embedding exponent for the space

W 1;�
0 (
).

If u : 
 ! IR is a Lebesgue measurable function, we de�ne, for allk � 0

Ak = f x 2 
 : ju(x)j � kg ; Bk = f x 2 
 : k � j u(x)j � k + 1 g: (1.8)

If E is a Lebesgue measurable subset ofIR N , we denote byjE j its N -dimensional Lebesgue
measure.

We extend the de�nition of J to a larger space, namelyW 1;q
0 (
), with q = Np (1 � � )

N � �p <
p, in the following way:

I (v) =

8
<

:
J (v); if

Z



a(x; v)jr vjp dx < + 1 ;

+ 1 ; otherwise:
(1.9)

For the sake of simplicity, in the following we suppose that:

a(x; t ) =
1

(1 + jt j)�p : (1.10)

Our results are the following:

Theorem 1.1 Let q =
Np(1 � � )

N � �p
, and let F be a function such thatjF j 2 L r (
)

with r � q0. Then there exists a minimumu of I on W 1;q
0 (
) .

The second result considers the case wherejF j has a high summability.
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Theorem 1.2 Let F be such thatjF j 2 L r (
) with r > N
p� 1 . Then any minimum u

of I on W 1;q
0 (
) belongs toW 1;p

0 (
) \ L 1 (
) ; thus J attains its minimum on W 1;p
0 (
) :

Remark 1.1 Note that the condition 0 < � <
1
p0 implies that

N
p � 1

> q 0 .

Remark 1.2 Observe that the condition on r does not depend on� , and the result
also does not depend on� . The main tool of the proof will be an L 1 (
) estimate, which
then implies the W 1;p

0 (
) estimate.

Theorem 1.3 Let F be such thatjF j 2 L r (
) with

Np0

N � �p 0(N � p)
� r <

N
p � 1

:

Then any minimum u of I on W 1;q
0 (
) belongs toW 1;p

0 (
) \ L s(
) ; thus J attains its
minimum on W 1;p

0 (
) , where

s =
Nr (p(1 � � ) � 1)

N � r (p � 1)
:

Remark 1.3 Since 0< � <
1
p0 we have:

Np0

N � �p 0(N � p)
<

N
p � 1

:

Remark 1.4 Observe that if the minima are not bounded, we still have that they
belong to W 1;p

0 (
). The W 1;p
0 (
) regularity result will be proveded combining the infor-

mation that u belongs toL s(
) with the fact that u is minimum.

Remark 1.5 As a consequence of the previous theorem, ifr =
N

p � 1
, we have that

any minimum u belongs toW 1;p
0 (
) and to L s(
) ; for every s < + 1 :

If we decrease the summability ofF , we �nd minima of I which do not in general
belong any more toW 1;p

0 (
) :

Theorem 1.4 Let F be such thatjF j 2 L r (
) with

q0 � r <
Np0

N � �p 0(N � p)
:

Then any minimum u of I on W 1;q
0 (
) belongs toW 1;�

0 (
) \ L s(
) ; thus J attains its
minimum on W 1;�

0 (
) , where

� =
Nr (p(1 � � ) � 1)

N � �pr
:

Remark 1.6 Note that the condition 0 < � <
1
p0 implies that:

q0 <
Np0

N � �p 0(N � p)
:
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Remark 1.7 If � tends to
1
p0 both

Np0

N � �p 0(N � p)
and q0 converge to

N
p � 1

, so

that Theorems 1:3 and 1:4 cannot be applied if � =
1
p0 .

The paper is organized as follows. In the next section we prove the existence of
minima for J , in the third section we give the proof of Theorem 1:2 (proof of bounded
minima), while the fourth section is devoted to the proof of Theorems 1:3 and 1:4:

2 Existence of Minima

In order to prove that there exists a minimum of I on W 1;q
0 (
), we are going to prove

that I is both coercive and weakly lower semicontinuous onW 1;q
0 (
).

Theorem 2.1 Let F be such that: jF j 2 L r (
) with r � q0. Then I is coercive and
weakly lower semi-continuous onW 1;q

0 (
) .

Proof. The weak lower semi-continuity is a consequence of a theorem by De Giorgi
(see [9]). As far as the coerciveness is concerned, it is enough to consider v in W 1;q

0 (
)
such that I (v) is �nite.

We have Z



jr vjq dx =

Z




jr vjq

(1 + jvj)�q (1 + jvj)�q dx;

therefore, by the H•older inequality we get:

Z



jr vjq dx � c

� Z




jr vjp

(1 + jvj)�p dx
� q

p
� Z



(1 + jvj)

�pq
p � q dx

� 1� q
p

:

By the fact that q� = �pq
p� q and Sobolev embedding theorem we obtain:

Z



jr vjq dx � c

� Z




jr vjp

(1 + jvj)�p dx
� q

p

 

1 +
� Z



jr vjq dx

� q
q

! 1� q
p

;

which implies that if R = kvkW 1;q
0 (
)

Rp �
� Z




jr vjp

(1 + jvj)�p dx
� q

p �
1 + Rq�

� 1� q
p

: (2.1)

On the other hand we have:

�
�
�
�

Z



F:r v dx

�
�
�
� � c

� Z



jF jq

0
dx

� 1
q0

� Z



jr vjq dx

� 1
q

:

� cR:
(2.2)

Thus, by (2.1) and (2.2) we obtain:

I (v) � c
Rp

(1 + Rq� )
p
q � 1

� cR:
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Using the de�nition of q, it is easy to check that:

p � q�
�

p
q

� 1
�

> 1;

so that
lim

R! + 1
I (v) = + 1 :

That is I is coercive onW 1;q
0 (
).

By standard results, we deduce that there exists the minimum ofI on W 1;q
0 (
) and

then Theorem 1:1 is proved.

3 Bounded Minima

By Theorem 2.1 there existsu in W 1;q
0 (
) such that

I (u) = min
n

I (u); v 2 W 1;q
0 (
)

o
;

i.e.
I (u) � I (v) for all v 2 W 1;q

0 (
) : (3.1)

3.1 Some lemmas

To prove the bounded minima, we need the following lemmas.

Lemma 3.1 [4] Let w be a function in W 1;�
0 (
) such that, for k greater than some

k0 Z

A k

jr wj � dx � ck�� jAk j
�

� � + " ;

where " > 0; 0 � � < 1. Then the norm of w in L 1 (
) is bounded by a constant which
depends onc; �; �; N; "; k 0:

The proof of this lemma can be found in the Appendix of [4], its proof is based on
the lemma according to Stampacchia [11].

Lemma 3.2 Let u be the minima of I in W 1;q
0 (
) , then

Z

A k

jr ujp

(1 + juj)�p dx �
Z

A k

F:r Gk (u) dx; 8 k > 0; (3.2)

where Ak is as in (1:8) and Gk is the function de�ned in (1:7).

Proof. We have, I (u) � I (0) = 0, then
Z




jr ujp

(1 + juj)�p dx �
Z



F:r u dx < + 1 :

On the other hand, we have for allk > 0

Z




jr Tk (u)jp

(1 + jTk (u)j)�p dx =
Z

fj u j� kg

jr ujp

(1 + juj)�p dx �
Z




jr ujp

(1 + juj)�p dx < + 1 :

We take v = Tk (u) as a test function in (3:1) to obtain:
Z

A k

jr ujp

(1 + juj)�p dx �
Z

A k

F:r Gk (u) dx; 8 k > 0:
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3.2 Proof of Theorem 1.2

Let � be such that r 0 < � < q < p , this implies that
1
r

+
1
�

< 1, then by H•older inequality,

we have:

Z

A k

jF:r Gk (u)j dx � k F kL r

� Z

A k

jr Gk (u)j � dx
� 1

�

:jAk j1� 1
� � 1

r

� c
� Z

A k

jr Gk (u)j � dx
� 1

�

:jAk j1� 1
� � 1

r

and by Lemma 3.2, we deduce that:

Z

A k

jr ujp

(1 + juj)�p dx � c
� Z

A k

jr Gk (u)j � dx
� 1

�

:jAk j1� 1
� � 1

r : (3.3)

Moreover, by the H•older inequality, we obtain:
Z

A k

jr uj � dx =
Z

A k

jr uj �

(1 + juj)�� (1 + juj)�� dx

�
� Z

A k

jr ujp

(1 + juj)�p dx
� �

p
� Z

A k

(1 + juj)
��p
p � � dx

� 1� �
p

;

therefore, by (3:3), we have:

Z

A k

jr uj � dx � cjAk j(1� 1
� � 1

r ) �
p � 1

� Z

A k

(1 + juj)
��p
p � � dx

� p � �
p � 1

: (3.4)

Since if k � 1, one has onAk that 1 + juj � 2(k + jGk (u)j), we can write:
Z

A k

jr uj � dx � c
n

k
��p
p � 1 jAk j(1� 1

� � 1
r ) �

p � 1 + p � �
p � 1

+ jAk j(1� 1
� � 1

r ) �
p � 1

� Z

A k

jGk (u)j
��p
p � � dx

� p � �
p � 1

)

:

Now, we choose� such that
��p

p � �
< � � , and therefore, using H•older's and Sobolev's

inequalities one obtains:
Z

A k

jr uj � dx � c
n

k
��p
p � 1 jAk j(1� 1

� � 1
r ) �

p � 1 + p � �
p � 1

+ jAk j(1� 1
� � 1

r ) �
p � 1 � �p

p � 1 : �
� �

� Z

A k

jr uj � dx
� �p

p � 1

)

:

Using the Young's inequality with exponents 1
�p 0 and 1

1� �p 0 , on the second term on the
right side, we get:

jAk j(1� 1
� � 1

r ) �
p � 1 � �p

p � 1 : �
� �

� Z

A k

jr uj � dx
� �p

p � 1

�
1
2

Z

A k

jr uj � dx + cjAk j(p� 1� �
r � �p �

� � ) 1
( p � 1)(1 � �p 0)
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so that we have:
Z

A k

jr uj � dx � c
n

k
��p
p � 1 jAk j1� �

r ( p � 1)

+ jAk j(p� 1� �
r � �p �

� � ) 1
( p � 1)(1 � �p 0)

o
:

(3.5)

As can be seen by means of straightforward calculations, the assumptions on r and � ,
imply that:

1 �
�

r (p � 1)
<

�
p � 1 �

�
r

� �p
�
� �

� 1
(p � 1)(1 � �p 0)

:

Moreover, sinceu belongs to W 1;q
0 (
), we have that jAk j tends to zero ask tends to

in�nity, thus there exists k0 such that if k � k0, we have:

jAk j(p� 1� �
r � �p �

� � ) 1
( p � 1)(1 � �p 0) < jAk j1� �

r ( p � 1)

and so (3:5) implies that:
Z

A k

jr uj � dx � ck
��p
p � 1 jAk j1� �

r ( p � 1) 8 k � k0:

It is easy to see that 1�
�

r (p � 1)
�

�
� � > 0 sincer >

N
p � 1

and
�p

p � 1
belongs to (0; 1)

since 0< � <
1
p0.

Thus, by Lemma 3.1u belongs toL 1 (
) : On the other hand,
Z




jr ujp

(1 + juj)�p dx �
Z



F:r u dx < + 1 :

The L 1 (
) estimate implies that:

1
(1 + kukL 1 (
) )�p

Z



jr ujp dx �

Z




jr ujp

(1 + juj)�p dx � c

and sou belongs toW 1;p
0 (
).

Theorem 1.3 is proved.

Remark 3.1 Observe that the condition
��p

p � �
< � � is equivalent to � < q:

4 Summability of Unbounded Minima

This section will be devoted to the proof of Theorems 1:3 and 1:4. We begin with
technical results, which will be used later.

4.1 Preliminary lemmas

Lemma 4.1. Let u be the minima of I in W 1;q
0 (
) , then for all k 2 IN , we have:

Z

B k

jr ujp

(1 + juj)�p dx �
c

1 + k

Z

A k

F:r u dx +
Z

B k

F:r u dx; (4.1)

where Ak and Bk are as in (1:8).
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Proof.

{ If k = 0, the result is trivial since u is minimum of I .

{ Let k > 0, we takev = u � T1(u � Tk (u)) as test function in (3:1), we obtain:
Z




jr ujp

(1 + juj)�p dx �
Z



F:r u dx �

Z




jr vjp

(1 + jvj)�p dx �
Z



F:r v dx

which implies that:

Z




jr ujp

(1 + juj)�p dx �
Z




jr vjp

(1 + jvj)�p dx �
Z

B k

F:r u dx

and by de�nition of v, we deduce that:
Z

B k

jr ujp

(1 + juj)�p dx +
Z

A k +1

jr ujp

(1 + juj)�p dx

�
Z

A k +1

jr ujp

(1 + jvj)�p dx �
Z

B k

F:r u dx

and then

Z

B k

jr ujp

(1 + juj)�p dx �
Z

A k +1

jr ujp
�

1
(1 + jvj)�p �

1
(1 + juj)�p

�
dx

+
Z

B k

F:r u dx

�
Z

A k +1

jr ujp
(1 + juj)�p � (1 + jvj)�p

(1 + jvj)�p (1 + juj)�p dx

+
Z

B k

F:r u dx:

(4.2)

Since jvj = juj � 1 on Ak+1 , we easily obtain that there exists a positive constant
c such that

(1 + juj)�p � (1 + jvj)�p � c(1 + jvj)�p � 1:

Thus (4:2) becomes
Z

B k

jr ujp

(1 + juj)�p dx � c
Z

A k +1

jr ujp

(1 + jvj)(1 + juj)�p dx +
Z

B k

F:r u dx:

Sincejvj � k on Ak+1 , we have:
Z

B k

jr ujp

(1 + juj)�p dx �
c

1 + k

Z

A k +1

jr ujp

(1 + juj)�p dx +
Z

B k

F:r u dx:

Using (3:2) we thus obtain (4:1).

Lemma 4.2 Let u be the minima of I in W 1;q
0 (
) , then for all 
 � 1, we have:

Z



jr ujp jujp( 
 � 1) dx � c1 + c2

Z



jF jp

0

jujp( �p 0+ 
 � 1) dx; (4.3)

where c1 and c2 are two positive constants.
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Proof. Let 
 � 1, we have:

Z



jr ujp jujp( 
 � 1) dx =

+ 1X

k=0

Z

B k

jr ujp jujp( 
 � 1) dx

�
+ 1X

k=0

Z

B k

jr ujp(1 + k)p( 
 � 1) dx

� c
+ 1X

k=0

Z

B k

jr ujp

(1 + juj)�p (1 + k)p( 
 � 1)+ �p dx:

(4.4)

Thus, by (4:1) we obtain:

Z



jr ujp jujp( 
 � 1) dx � c

+ 1X

k=0

(1 + k)p( 
 � 1)+ �p � 1
Z

A k

jF j:jr uj dx

+ c
+ 1X

k=0

(1 + k)p( 
 � 1)+ �p
Z

B k

jF j:jr uj dx:

(4.5)

Observe that, for k 2 IN , we have:

Z

A k

jF j:jr uj dx =
+ 1X

h= k

Z

B h

jF j:jr uj dx: (4.6)

Hence,

+ 1X

k=0

(1 + k)p( 
 � 1)+ �p � 1
Z

A k

jF j:jr uj dx

=
+ 1X

k=0

(1 + k)p( 
 � 1)+ �p � 1
+ 1X

h= k

Z

B h

jF j:jr uj dx:

(4.7)

Therefore, changing the order of summation, and recalling that:

hX

k=0

k l � c(1 + h) l +1 (4.8)

with c = c(l ), we have:

+ 1X

k=0

(1 + k)p( 
 � 1)+ �p � 1
Z

A k

jF j:jr uj dx

=
+ 1X

h=0

hX

k=0

(1 + k)p( 
 � 1)+ �p � 1
Z

B h

jF j:jr uj dx

=
+ 1X

h=0

(1 + h)p( 
 � 1)+ �p
Z

B h

jF j:jr uj dx:

(4.9)
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We obtain from (4:5) that:

Z



jr ujp jujp( 
 � 1) dx � c

+ 1X

k=0

(1 + k)p( 
 � 1)+ �p
Z

B k

jF j:jr uj dx

� c
+ 1X

k=0

Z

B k

jF j:jr uj(1 + juj)p( 
 � 1)+ �p dx

� c
Z



jF j:jr uj dx + c

Z



jF j:jr ujjujp( 
 � 1)+ �p dx:

By Young's inequality and the fact that
Z



jF j:jr uj dx < + 1 , we deduce (4:3).

Lemma 4.3 Let � > 0 and let u 2 W 1;q
0 (
) be the minimum of I , then we have:

Z




jr ujp

(1 + juj)� dx � c
Z



jF jp

0
(1 + juj)�pp 0� � dx: (4.10)

Proof. Let � > 0 and let u 2 W 1;q
0 (
) be the minimum of I , we have:

Z




jr ujp

(1 + juj)� dx =
Z




jr ujp

(1 + juj)�p (1 + juj)�p � � dx dx

� c
+ 1X

k=0

(1 + k)�p � �
Z

B k

jr ujp

(1 + juj)�p dx
(4.11)

and this implies, by (4:1) that:

Z




jr ujp

(1 + juj)� dx � c
+ 1X

k=0

(1 + k)�p � � � 1
Z

A k

jF j:jr uj dx

+ c
+ 1X

k=0

(1 + k)�p � �
Z

B k

jF j:jr uj dx:

(4.12)

Using (4:6) one has

+ 1X

k=0

(1 + k)�p � � � 1
Z

A k

jF j:jr uj dx

=
+ 1X

k=0

(1 + k)�p � � � 1
+ 1X

h= k

Z

B h

jF j:jr uj dx:

Changing the order of summation and using (4:8), we have:

+ 1X

k=0

(1 + k)�p � � � 1
Z

A k

jF j:jr uj dx

�
+ 1X

k=0

(1 + k)�p � �
Z

B k

jF j:jr uj dx:

(4.13)

Combining (4:12) and (4:13), we get:
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Z




jr ujp

(1 + juj)� dx � c
+ 1X

k=0

(1 + k)�p � �
Z

B k

jF j:jr uj dx

� c
+ 1X

k=0

Z

B k

jF j:jr uj(1 + juj)�p � � dx

� c
Z



jF j:jr uj(1 + juj)�p � � dx:

Now, the Young's inequality implies that:
Z




jr ujp

(1 + juj)� dx � c
Z



jF jp

0

(1 + juj)�pp 0� � dx:

4.2 Proof of Theorem 1.3

We begin with the following technical lemma.

Lemma 4.4 Let 
 =
(1 � �p 0)( r (p � 1))�

p� , we have

i) s = 
p � =
pr(�p 0 + 
 � 1)

r � p0

ii) 
 � 1 if and only if r �
Np0

N � �p 0(N � p)

iii) 1 �
p0

r
<

p
p� if and only if r <

N
p � 1

:

Theorem 4.1 Under the hypotheses of Theorem1:3, we have the following estima-
tions

i)
Z



jujs dx � c3,

ii)
Z



jr ujp dx � c4;

where c3 and c4 are two positive constants.

Proof.

i) We have, by Lemmas 4:2; 4:4 and Sobolev embedding

� Z



jujs dx

� p
p �

=
� Z



juj 
p

�

dx
� p

p �

�
Z



jr ujp jujp( 
 � 1) dx

� c +
Z



jF jp

0
jujp( �p 0+ 
 � 1) dx:

(4.14)

Applying the Holder inequality, we obtain:

� Z



jujs dx

� p
p �

�
� Z



jF jr dx

� p 0

r
� Z



juj

pr ( �p 0+ 
 � 1)
r � p 0 dx

� 1� p 0

r

:
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Then by i ); iii ) of Lemma 4:4 and Young's inequality, we deduce

Z



jujs dx � c3:

ii) We have:

Z



jr ujp dx =

Z

fj u j� 1g
jr ujp dx +

Z

fj u j� 1g
jr ujp dx

� c
Z




jr ujp

(1 + juj)�p dx +
Z



jr ujp jujp( 
 � 1) dx

� c
Z



jF jjr uj dx +

Z



jr ujp jujp( 
 � 1) dx

and from (4:14), we get:

Z



jr ujp jujp( 
 � 1) dx � c4;

which implies that: Z



jr ujp dx � c5:

4.3 Proof of Theorem 1.4

We begin with the following technical lemma.

Lemma 4.5 Let � =
pN � r (p � 1)(N � �p 0(N � p))

N � r (p � 1)
, we have the following prop-

erties :

i) s =
��

p � �
=

r (�pp 0 � � )
r � p0 ,

ii) � > 0 if and only if r <
Np0

N � �p 0(N � p)
,

iii) (1 �
p0

r
)
�
p

+ 1 �
�
p

<
�
s

:

Theorem 4.2 Under the hypotheses of Theorem1:4, we have the following estima-
tions:

i)
Z



jujs dx � c6,

ii)
Z



jr uj � dx � c7;

where c6 and c7 are two positive constants.
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Proof. Since� � = s, we have by Sobolev embedding:

� Z



jujs dx

� �
s

=
� Z



juj �

�

dx
� �

� �

� c
Z



jr uj � dx

= c
Z




jr uj �

(1 + juj)
��
p

(1 + juj)
��
p dx:

(4.15)

Applying H•older inequality, we have:

� Z



jujs dx

� �
s

� c
� Z




jr ujp

(1 + juj)� dx
� �

p
� Z



(1 + juj)

��
p � � dx

� 1� �
p

: (4.16)

On the other hand by Lemma 4:2 and H•older inequality, we deduce that:

Z




jr ujp

(1 + juj)� dx �
� Z



(1 + juj)

r ( �pp 0� � )
r � p 0 dx

� 1� p 0

r

: (4.17)

From (4:15); (4:16) and (4:17), we get:

� Z



jujs dx

� �
s

� c
Z



jr uj � dx

�
� Z



(1 + juj)

r ( �pp 0� � )
r � p 0 dx

� (1 � p 0

r ) �
p

�
� Z



(1 + juj)

��
p � � dx

� 1� �
p

(4.18)

which implies, by using Lemma 4:5

� Z



jujs dx

� �
s

�
� Z



(1 + juj)s dx

� (1 � p 0

r ) �
p +1 � �

p

:

Finally, by the lemma 4:5 and H•older inequality, we deduce that:
Z



jujs dx � c6:

Therefore by (4:18), we also have :
Z



jr uj � dx � c7:
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Abstract: A hybrid projective synchronization scheme for two identical fractional-order
chaotic systems with fractional order 1< q < 2 has been discussed in this paper. Based on
the stability theory of fractional-order systems, a controller for the synchronization of two iden-
tical fractional-order chaotic systems is designed. To illustrate the effectiveness of the pro-
posed scheme, we discuss two examples: (i) the fractional-order Lorenz chaotic system with
fractional-orderq = 1:17; (ii) the fractional-order Lu chaotic system with fractional-order q =
1.13. The numerical simulations exhibit the validity and feasibility of the proposed scheme.

Keywords: fractional order in the interval (1,2); chaotic systems; hybrid projective synchro-
nization.

Mathematics Subject Classi�cation (2010): 37B25, 37D45, 37N30, 37N35, 70K99.

1 Introduction

The theory of derivatives of fractional order, i.e., non-integer order, goes back to Leibniz’s note
in his list to L’Hopital, dated 30 September 1695, in which the meaning of derivative of order
one half was discussed. Fractional calculus is a 300 year old mathematical topic. Although it has
a long history, the applications of fractional calculus to physics and engineering are just a recent
focus of interest [1] and [2]. It was found that many systems in interdisciplinary �elds can be
elegantly described with the help of fractional derivatives. Many systems are known to display
fractional-order dynamics, such as viscoelastic systems [3], dielectric polarization [4], electrode�
electrolyte polarization [5], electromagnetic waves [6], quantitative �nance [7], and quantum
evolution of complex systems [8]. In recent years, chaotic phenomenon has been found in many
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c
 2016 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 350



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16(4) (2016) 350{365 351

fractional-order nonlinear systems, such as the fractional-order Lorenz chaotic system [9], [10],
Chuas fractional-order chaotic circuit system [10], the fractional-order modi�ed Duf�ng chaotic
system [11], the fractional-order Rossler chaotic system [12], [13], the fractional-order Chen
chaotic system [10]- [12], the fractional-order memristor chaotic system [14], and so on.

In 1999, projective synchronization was �rst proposed by Mainieri and Rehacek [15], where
the drive and response systems were synchronized up to a scaling factor. Its proportional fea-
ture can be used to extend binary digital to M-nary digital communication for achieving fast
communication [16]. Both complete synchronization and anti-phase synchronization are special
cases of projective synchronization. Recently, various kinds of projective synchronization for
fractional order chaotic systems without time-delay have been studied, such as hybrid projective
synchronization [17], generalized projective synchronization [18], function projective synchro-
nization [19], lag projective synchronization [20] and modi�ed projective synchronization [21].

However, many previous synchronization methods [22]- [25], [26]- [29] for fractional-order
chaotic systems only focused on the fractional-order 0< q < 1, while in fact, there are many
fractional-order systems with fractional-order 1< q < 2 in the real world. For example, the
time fractional heat conduction equation [30], the fractional telegraph equation [31], the time
fractional reaction-diffusion systems [31], the fractional diffusion-wave equation [32], the space-
time fractional diffusion equation [33], the super-diffusion systems [34], etc., but the chaos phe-
nomenon was not considered in [30]- [35]. Meanwhile, based on numerical simulation, Ge and
Jhuang [31] reported some results on synchronization of the fractional order rotational mechan-
ical system with fractional-orderq = 1:1. Up to now, there seem to be no results on chaotic
synchronization for fractional-order chaotic systems with 1< q < 2 through precise theoriza-
tion. So, how to achieve the chaotic synchronization for fractional-order nonlinear systems with
1 < q < 2 through precise theorization is an interesting and open question of academic signi�-
cance as well as practical importance.

Motivated by the above mentioned discussion, in this paper we propose a hybrid projective
synchronization approach for a class of fractional-order chaotic systems with fractional-order
1 < q < 2 through precise theorization. To show the effectiveness of the proposed scheme, the
hybrid projective synchronization for a fractional-order Lorenz chaotic system with fractional-
orderq = 1:17 and Lu fractional-order chaotic system with fractional-orderq = 1:13 are dis-
cussed, respectively. The numerical simulations have indicated the validity and feasibility of our
scheme.

2 The Review and the Approximation of a Fractional Operator

The differintegral operator, denoted byaDq
t , is a combined differentiation-integration operator

commonly used in fractional calculus. This operator is a notation for taking both the fractional
derivative and the fractional integral in a single expression and is de�ned by:

aDq
t =

8
>><

>>:

dq

dtq ; q > 0;
0; q = 0;
tR

a
(dt )� q; q < 0:

(1)

There are some de�nitions for fractional derivatives [1]. The commonly used de�nitions are
Grunwald-Letnikov, Riemann-Liouville, and Caputo de�nitions. The Grunwald-Letnikov de�-
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nition is given by:

aDq
t f (t) =

dq f (t)
d(t � a)q

= lim[
t � a

N
]� q

N� 1

å
j= 0

(� 1) j
�

q
j

�
f
�

t � j
ht � a

N

i�
:

(2)

The Riemann-Liouville de�nition is the simplest and easiest de�nition to use. This de�nition is
given by:

aDq
t f (t) =

dq f (t)
d(t � a)q

=
1

G(n � q)
dn

dtn

tZ

0

(t � t )n� q� 1 f (t )d(t );
(3)

where n is the �rst integer which is not less than q, i.e.,n � 1 � q < n andG is the Gamma
function de�ned as:

G(z) =
¥Z

0

tz� 1e� tdt: (4)

For functionsf (t) havingn continuous derivatives fort � 0 wheren� 1 � q < n, the Grunwald�
Letnikov and the Riemann�Liouville de�nitions are equivalent. The Laplace transforms of the
Riemann�Liouville fractional integral and derivative are given as follows:

Lf 0Dq
t f (t)g = SqF(s); q � 0; (5)

Lf 0Dq
t f (t)g = SqF(s) �

n� 1

å
k= 0

Sk
0Dq

t f (0); n � 1 < q � n 2 N: (6)

Unfortunately, the Riemann-Liouville fractional derivative appears unsuitable to be treated by the
Laplace transform technique in that it requires the knowledge of the non-integer order derivatives
of the function att = 0. This problem does not exist in the Caputo de�nition that is sometimes
referred to as smooth fractional derivative in literature. This de�nition of derivative is de�ned by

0Dq
t =

(
1

G(m� q)
Rt

0
f m(t )

(t� t )q+ 1� mdt ; m� 1 < q < m;
dm f (t)

dtm ; q = m;
(7)

wherem is the �rst integer larger thanq. It is found that the equations with Riemann�Liouville
operators are equivalent to those with Caputo operators by homogeneous initial conditions as-
sumption [1].

3 Stability of Fractional Order Systems

Stability of fractional systems has been thoroughly investigated where necessary and suf�cient
conditions have been derived in [39]. The stability region of a linear set of fractional order
equations, each of orderq, such that 1< q < 2 is shown in Figure 1. An autonomous system
is asymptotically stable iffj argl j> qp

2 is satis�ed for all eigenvaluesl of matrix A. Also this
system is stable iffj argl j� qp

2 is satis�ed for all eigenvalues of a matrixA and those critical
eigenvalues which satisfyj argl j> qp

2 , and have geometric multiplicity one [38].
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Figure 1: Stability of fractional order systems such that 1< q < 2.

4 System Description Problem Formulation for Hps Between Fractional Order Systems

In this section we put a glimpse of methodology and problem formulation for hybrid projective
synchronization between fractional order chaotic systems via tracking control. The fractional
order chaotic drive and response systems can be described as follows:

dq(x)
dtq

= f (x) (8)

and
dq(y)
dtq

= g(y) + f (x;y); (9)

wherex 2 Rn;y 2 Rm are state vectors of the drive system (8), and the response system (9) and
f ;g : Rn ! Rn are continuous vector functions, respectively,f (x;y) is a vector controller to be
designed.

De�nition 4.1 For the drive system (8) and the response system (9), the Hybrid Projective
Synchronization (HPS) is achieved if there exists ann � n invertible matrixA such that

lim
t! ¥

ke(t)k = kAy� xk = 0

wherek � k is an Euclidean norm.

Remark 4.1 If A = s I ;s 2 R, the HPS problem will reduce to Projective Synchroniza-
tion(PS) whereI is ann � n matrix with proper dimensions. In particular, ifs = 1 ands = � 1
the problem is further simpli�ed to complete synchronization and anti-phase synchronization,
respectively. IfA = diag(a1;a2; :::;an), wherea1;a2; :::;an are not all zeros andai 6= a j for some
i and j, then the modi�ed projective synchronization will appear. Therefore CS, AS, PS, and
MPS are the special cases of hybrid projective synchronization.

In order to obtain the HPS for the fractional order chaotic system we consider that for frac-
tional order chaotic system (8) as drive system, and construct a response system as follows

dq

dtq
(y) = A� 1

h
f (Ay) + f (x;y)

i
; (10)
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whereA� 1 is the inverse of the invertible matrixA, y2 Rn are state vectors of the response system
(10) andf (x;y) is a controller which may be designed.

De�ne the HPS error between the response system (10) and the drive system (8) as

e= Ay� x;

e= ( e1;e2; :::;en);

ei =
� n

å
j= i

ai j y j

�
� xi (i; j = 1;2; :::;n):

Let
f (Ay) � f (x) = E(x;e): (11)

Now we assume that the error vector e can be subdivided into two vectorsea =
(en1;en2; :::;enk) andeb = ( en(k+ 1) ;en(k+ 2) ; :::;enl), so thatE(x;y) has the following form:

E(x;e) =
�

Ba ea + h1(x;ea ;eb )
Bb eb + h21(x;ea ;eb ) + h22(x;ea ;eb )

�
; (12)

whereh1(x;ea ;eb ) 2 Rm;h21(x;ea ;eb ) 2 Rn� m;h22(x;ea ;eb ) 2 Rn� m and lim
ea ! 0

h21(x;ea ;eb ) =

0, respectively.Ba 2 Rn� m andBb 2 R(n� m)� (n� m) are constant matrices.
Rewrite the controllerf (x;y) as follows

f (x;y) = m(x;e) =
�

ma (x;e)
mb (x;e)

�
; (13)

wherema (x;e) 2 Rm andmb (x;e) 2 Rn� m, respectively.
Now the following theorem is based on the stability of fractional order chaotic systems, which

gives the �nal destination to problem formulation.

Theorem 4.1 If the controllerf (x;y) in the response system(10)can be chosen as

f (x;y) = m(x;e) =
�

ma (x;e)
mb (x;e)

�
=

�
Qa ea � h1(x;ea ;eb )
Qb eb � h22(x;ea ;eb )

�
;

where Qa 2 Rm� m and Qb 2 R(n� m)� (n� m) are suitable constant matrices respectively. If all the
eigenvalues of Ba + Qa satisfyj argl i j> qp

2 ; (i = 1;2; :::;m) and all the eigenvalues of Bb + Qb
satisfyj argl i j> qp

2 ; (i = 1;2; :::;n � m), then HPS between drive and response system can be
achieved.

Remark 4.2 In order to use the stability theory of linear fractional-order systems [37], the

controller f (x;y) or m(x;y) is chosen as
�

Qa ea � h1(x;ea ;eb )
Qb eb � h22(x;ea ;eb )

�
. Moreover, the nonlinear

termh21(x;ea ;eb ) 2 Rn� m in the error dynamic system (12) or response system (10) is preserved.

5 Illustrative Examples

In this section, to show the effectiveness of the hybrid projective synchronization approach, we
apply the hybrid projective synchronization scheme for the fractional-order Lorenz chaotic sys-
tem with fractional-order 1< q < 2 and the fractional order Lu system with fractional order
1 < q < 2 respectively.
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5.1 HPS for fractional order Lorenz chaotic system with1 < q < 2.

The fractional order Lorenz system is a system of three ordinary differential equations displaying
a chaotic behaviour for certain values of parameters(s ;b ;g), and fractional orders(q1 = q2 =
q3 = q). The fractional order Lorenz system with parameter values(s ;b ;g) = ( 10;28;8=3) and
fractional orderq with 1 < q < 2 is given by

dqx1

dtq
= 10(x2 � x1);

dqx2

dtq
=

8
3

x1 � x2 � x1x3;

dqx3

dtq
= x1x2 � 28x3:

(14)

The chaotic attractor of fractional order Lorenz system for different values of q, 1< q < 2 is
depicted in Figures 2-7.

 

Figure 2: 3D chaotic attractor of the Lorenz sys-
tem withq1 = q2 = q3 = 1:15.

 

Figure 3: 2D projection of the Lorenz system with
q1 = q2 = q3 = 1:15.

According to the HPS scheme presented in the above section, the response system is de-
scribed by

0

BBBB@

dqy1
dtq

dqy2
dtq

dqy3
dtq

1

CCCCA
= A� 1

0

BBBBBBB@

10(
3
å
j= 1

a2 jy j �
3
å
j= 1

a1 jy j )

8=3(
3
å
j= 1

a1 jy j ) �
3
å
j= 1

a2 jy j �
3
å
j= 1

a1 jy j
3
å
j= 1

a3 jy j

3
å
j= 1

a1 jy j
3
å
j= 1

a2 jy j � 28
3
å
j= 1

a3 jy j

1

CCCCCCCA

+ A� 1f (x;y); (15)

whereA =

0

@
a11 a12 a13
a21 a22 a23
a31 a32 a33

1

A is a reversible matrix andA� 1 is its reverse matrix.
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Figure 4: 3D chaotic attractor of the Lorenz sys-
tem withq1 = q2 = q3 = 1:16.

 

Figure 5: 2D projection of the Lorenz system with
q1 = q2 = q3 = 1:16.

 

Figure 6: 3D chaotic attractor of the Lorenz sys-
tem withq1 = q2 = q3 = 1:17.

 

Figure 7: 2D projection of the Lorenz system with
q1 = q2 = q3 = 1:17.

According to de�nition of HPS error dynamics, we have

dqe
dtq

= A
dqy
dtq

�
dqx
dtq

= f (Ay) � f (x) + f (x;y): (16)

Let
f (Ay) � f (x) = E(x;e): (17)

Therefore, from (16) we have
dqe
dtq

= E(x;e) + f (x;y): (18)
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Our goal is to �ndE(x;e) and design a controller to achieve HPS.
Now from equation (17) we have

E(x;e) =

0

BBBBBBB@

10(
3
å
j= 1

a2 jy j �
3
å
j= 1

a1 jy j )

8=3(
3
å
j= 1

a1 jy j ) �
3
å
j= 1

a2 jy j �
3
å
j= 1

a1 jy j
3
å
j= 1

a3 jy j

3
å
j= 1

a1 jy j
3
å
j= 1

a2 jy j � 28
3
å
j= 1

a3 jy j

1

CCCCCCCA

�

0

@
10(x2 � x1)

8
3x1 � x2 � x1x3

x1x2 � 28x3

1

A (19)

which gives

E(x;e) =

0

@
10e2 � 10e1

8
3e1 � e2 � e1x3 � e3x1 � e1e3

e1e2 + x1e2 + x2e1 � 28e3

1

A : (20)

We choose the following:

ea = e1;eb = ( e2;e3)T ;Ba = � 10;h1(x;ea ;eb ) = 10e2;Bb =
�

� 1 0
0 � 28

�
;h21(x;ea ;eb ) =

� 8
3e1 � e1x3 � � e1e3

e1e2 + x2e1

�
; andh21(x;ea ;eb ) =

�
� e3x1
e2x1

�
. Clearly lim

ea ! 0
h21(x;ea ;eb ) = 0:

According to Theorem 4.1, the controllerf (x;y) is now de�ned as

f (x;y) =
�

ma (x;e)
mb (x;e)

�
=

�
Qa ea � h1(x;ea ;eb )
Qb eb � h22(x;ea ;eb )

�
: (21)

So, from equations (20) and (21) error dynamics can be rewritten as:

dqea

dtq
= ( Ba + Qa )ea ;

dqeb

dtq
= ( Bb + Qb )eb + h21(x;ea ;eb ):

(22)

Therefore, choose suitable matricesQa 2 R1 and Qb 2 R2� 2 such that all the eigenvalues of
(Ba + Qa ) satisfy j argl i j> qp

2 (i = 1) and all the eigenvalues of(Bb + Qb ) satisfy j argl i j>
qp
2 (i = 1;2):

Since equation (22) is asymptotically stable with equilibrium pointsea = 0;eb = 0: Ob-
viously lim

ea ! 0
h21(x;ea ;eb ) = 0: This implies that the HPS between drive system and response

system can be achieved.

5.2 Numerical simulations

Parameters of the fractional order Lorenz system are(s ;b ;g) = ( 10;8=3;28) and fractional order
is taken to beq = 1:17, for which the system displays a chaotic behaviour. In equation (22), we

chooseQa = 8 andQb =
�

� 1 0
0 24

�
, which gives that the stability condition of the above

Theorem 4.1 is satis�ed, as eigenvalue of(Ba + Qa ) is -2 and eigenvalues of(Bb + Qb ) are
-2 and -4 and for all eigenvalues condition of Theorem 4.1 has been satis�ed asj argl i j� qp

2 ,
whereq= 1:17. The initial conditions for the master and slave systems are(x1(0);x2(0);x3(0)) =

(7;9;6) and(y1(0);y2(0);y3(0)) = ( 6;8;5), respectively andA =

0

@
1 0 0:83
1 0 � 0:03
1 � 1 0:16

1

A . Then
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for (e1(0);e2(0);e3(0)) = ( 0:50; � 0:80; � 1) andTsim = 20, diagram of convergence of errors
(Figures 9-11) is the witness for achieving hybrid projective synchronization between the drive
and response systems.

 

Figure 8: The synchronization error signale1(t).

 

Figure 9: The synchronization error signale2(t).

 

Figure 10: The synchronization error signale3(t).

 

Figure 11: Error convergence diagram for HPS.
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5.3 HPS for fractional order Lu chaotic system with with fractional order 1 < q < 2

The fractional order Lu system is a system of three fractional order differential equation exhibit-
ing chaotic behaviour for certain values of parameters. The equation of the system is:

dqx1

dtq
= 36(x2 � x1);

dqx2

dtq
= 20x2 � x1x3;

dqx3

dtq
= x1x2 � 3x3:

(23)

The chaotic attractor of fractional order Lu system for different values of q, 1< q < 2 is depicted
in Figures 12-17.

 

Figure 12: 3D chaotic attractor of the Lu system
with q1 = q2 = q3 = 1:11.

 

Figure 13: 2D projection of the Lu system with
q1 = q2 = q3 = 1:11.

According to the HPS scheme presented in the above section, the response system is
described by

0

BBBB@

dqy1
dtq

dqy2
dtq

dqy3
dtq

1

CCCCA
= A� 1

0

BBBBBBB@

36(
3
å
j= 1

a2 jy j �
3
å
j= 1

a1 jy j )

20(
3
å
j= 1

a2 jy j ) �
3
å
j= 1

a1 jy j
3
å
j= 1

a3 jy j

3
å
j= 1

a1 jy j
3
å
j= 1

a2 jy j � 3
3
å
j= 1

a3 jy j

1

CCCCCCCA

+ A� 1f (x;y); (24)

whereA =

0

@
a11 a12 a13
a21 a22 a23
a31 a32 a33

1

A is a reversible matrix andA� 1 is its reverse matrix.
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Figure 14: 3D chaotic attractor of the Lu system
with q1 = q2 = q3 = 1:12.

 

Figure 15: 2D projection of the Lu system with
q1 = q2 = q3 = 1:12.

 

Figure 16: 3D chaotic attractor of the Lu system
with q1 = q2 = q3 = 1:13.

 

Figure 17: 2D projection of the Lu system with
q1 = q2 = q3 = 1:13.

Now, according to de�nition of HPS error dynamics, we have

dqe
dtq

= A
dqy
dtq

�
dqx
dtq

= f (Ay) � f (x) + f (x;y): (25)

Let
f (Ay) � f (x) = E(x;e): (26)

Therefore, (25) implies that
dqe
dtq

= E(x;e) + f (x;y): (27)
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Our goal is to �ndE(x;e) and design a controller to achieve HPS. Equation (10), gives

E(x;e) =

0

BBBBBBB@

36(
3
å
j= 1

a2 jy j �
3
å
j= 1

a1 jy j )

20(
3
å
j= 1

a2 jy j ) �
3
å
j= 1

a1 jy j
3
å
j= 1

a3 jy j

3
å
j= 1

a1 jy j
3
å
j= 1

a2 jy j � 3
3
å
j= 1

a3 jy j

1

CCCCCCCA

�

0

@
36(x2 � x1)

20x1 � x2 � x1x3
x1x2 � 3x3

1

A (28)

which gives

E(x;e) =

0

@
36e2 � 36e1

20e2 � e1x3 � e3x1 � e1e3
e1e2 + x1e2 + x2e1 � 3e3

1

A : (29)

We choose

ea = e1; eb = ( e2;e3)T ; Ba = � 36; h1(x;ea ; eb ) = 36e2;

Bb =
�

20 0
0 � 3

�
; h21(x;ea ; eb ) =

�
� e1x3 � e1e3
e1e2 + x2e1

�
; h22(x;ea ;eb ) =

�
� e3x1
e2x1

�
:

Clearly, lim
ea ! 0

h21(x;ea ;eb ) = 0:

According to Theorem 4.1, the controllerf (x;y) is now de�ned as

f (x;y) =
�

ma (x;e)
mb (x;e)

�
=

�
Qa ea � h1(x;ea ;eb )
Qb eb � h22(x;ea ;eb )

�
: (30)

So from equation (29) and (30) error dynamical system can be rewritten as:

dqea

dtq
= ( Ba + Qa )ea ;

dqeb

dtq
= ( Bb + Qb )eb + h21(x;ea ;eb ):

(31)

Therefore, choose suitable matricesQa 2 R1 and Qb 2 R2� 2 such that all the eigenvalues of
(Ba + Qa ) satisfyj argl i j> qp

2 (i = 1) and all the eigenvalues of(Bb + Qb ) satisfyj argl i j>
qp
2 (i = 1;2)

The equilibrium pointsea = 0;eb = 0 of system (31) is asymptotically stable.
Obviously, lim

ea ! 0
h21(x;ea ;eb ) = 0: This implies that the HPS between drive system and re-

sponse system can be achieved.

5.4 Numerical Simulations

Parameters of the fractional order Lu system are(a;b;c) = ( 36;3;20), and fractional order is
takenq = 1:13 for which the system displays a chaotic behaviour. In equation (31), we choose

Qa = 34; Qb =
�

� 23 0
0 � 2

�
:

This implies that the stability conditions of Theorem 4.1 are satis�ed, as eigenvalue of
(Ba + Qa ) is -2 and eigenvalues of(Bb + Qb ) are -3 and -5, and for all eigenvalues condi-
tion of Theorem 4.1 are satis�ed asj argl i j� qp

2 , whereq = 1:13. The initial conditions for
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Figure 18: The synchronization error signale1(t).

 

Figure 19: The synchronization error signale2(t).

 

Figure 20: The synchronization error signale3(t).

 

Figure 21: Error convergence diagram for HPS.

the master and slave systems are(x1(0);x2(0);x3(0)) = ( 2;3;6); (y1(0);y2(0);y3(0)) = ( 4;5;8),
respectively, and

A =

0

@
1 0 � 0:18
0 � 0:42 1
1 1:83 0

1

A :

Then for(e1(0);e2(0);e3(0)) = ( � 0:89; � 0:25; � 0:50) andTsim = 20, diagram of convergence
of errors (Figures 18-21) is the witness of achieving hybrid projective synchronization between
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the drive and response systems.

6 Conclusion

In this paper, we have investigated a new synchronization scheme to achieve hybrid projective
synchronization for two identical fractional order chaotic systems with fractional orderq such
that 1< q < 2 via tracking control method and stability of fractional order system. Hybrid
projective synchronization (HPS) is a more general de�nition of projective synchronization, in
which the drive system and response system could be synchronized up to a vector function factor.
HPS is different from the PS and more bene�cial to enhance security of communication than any
other synchronization because it is obvious that the unpredictability of the vector function factor
in HPS is more than that of the same scaling factor in PS. The numerical simulations exhibit
the validity and feasibility of the proposed scheme. Numerical and computational results are in
excellent agreement.
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Abstract: In this brief note we present a simple proof of global existence and unique-
ness of a solution of an integro-di�erential equation

x0(t) = g(t; x(t)) +
Z t

0
A(t � s)f(s; x(s))ds;

where f and g satisfy a Lipschitz condition with constant K = K(t) where K(t)
is allowed to tend to in�nity with t. The proof employs the idea of progressive
contractions. It is a general �xed point theorem for di�erential equations.

Keywords: �xed points; existence; uniqueness; progressive contractions; integro-
di�erential equations.

Mathematics Subject Classi�cation (2010): 45J05, 37C25, 47H09.

1 Introduction

This is the third in a series of very short notes which we are constructing to illustrate
the power, 
exibility, and simplicity of a technique which we call progressive contractions
to obtain a unique global solution of various kinds of di�erential and integral equations.
We have applied the method to integral equations [4], fractional di�erential equations [6]
of the type considered in [2], and integral equations of the Krasnoselskii type featuring a
sum of two operators [5]. Each of the problems is of an essentially di�erent type and the
title of each note is chosen to allow interested readers to detect which subject is being
treated.

In most of the existing literature investigators prove existence and uniqueness of
solutions of di�erential equations by writing them as integral equations and applying
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some type of �xed point theorem which can be tedious and challenging, often patching
together solutions on short intervals after making complicated translations. Here, we
make three simple short steps, two of which are actually the same. Moreover, we treat
the equation directly without changing into an integral equation and we use a method
which we introduced earlier and called direct �xed point mappings. Each of the three
steps is an elementary contraction mapping on a short interval.

Examples of direct �xed point mappings can be seen in [1, 3, 7, 8]. In each case
there are excellent reasons for not �rst converting to an integral equation. In this note
there are two reasons. First, while one can prove that there is an inversion because of
the fundamental properties of contractions, we see no way to actually achieve it in a
workable form. The second reason is accidental. We had begun by asking a contraction
condition on g which had been necessary in earlier work with integral equations, but
noticed that the integral in the mapping allowed us to ask only a Lipschitz condition.
The result is still true when f is identically zero and that means there is a simple proof of
global existence in case of an ordinary di�erential equation with only a (possibly growing)
Lipschitz condition.

The equation we treat is the scalar equation

x0(t) = g(t; x(t)) +
Z t

0
A(t� s)f(s; x(s))ds; 0 =

d
dt
; x(0) = a 2 <; (D)

although a vector system is handled in the same way. In that case, x; g; f are vectors
and A is an n � n matrix. As we are obtaining solutions on [0;1) and asking no sign
conditions, it is clear that we will need some growth restrictions. As we are asking for
uniqueness it is also clear that we will need something of a Lipschitz condition. In fact,
we will ask for a Lipschitz condition on f and g, but the Lipschitz \constant" can grow
to in�nity as t tends to in�nity.

In order to obtain an integral equation for mapping, we write the direct �xed point
equation as

�(t) = g
�
t; a+

Z t

0
�(s)ds

�
+

Z t

0
A(t� s)f

�
s; a+

Z s

0
�(u)du

�
ds (1.1)

so that if we obtain a continuous solution of (1.1), then

x(t) = a+
Z t

0
�(s)ds

will be a continuously di�erentiable solution of the original equation (D).
Speci�cally, we ask that

f; g : [0;1) � < ! < are continuous; (1.2)

and for each E > 0 there is a K = K(E) > 0 such that

0 � t � E; x; y 2 < =) jg(t; x) � g(t; y)j � Kjx� yj; (1.3)

0 � t � E; x; y 2 < =) jf(t; x) � f(t; y)j � Kjx� yj: (1.4)

Finally, we ask that

A : (0;1) ! < be continuous; (1.5)
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that if � : [0;1) ! < is continuous then
Z t

0
A(t� s)�(s)ds be continuous; (1.6)

and that Z t

0
jA(s)jds be continuous and converge to zero as t # 0: (1.7)

For the E and K pick � 2 (0; 1) and then choose a positive T � < 1 with KT � < �.
Finally, select T = T (K;T �) > 0 with T < T � < 1 so that, collecting:

K
Z T

0
jA(s)jds <

1 � �
2

; T �K < �; 0 < T < T � < 1: (1.8)

We begin with a solution to (1.1) on [0; E] and parlay it to [0;1).

2 Existence and Uniqueness

Theorem 2.1 If conditions (1.2) {(1.8) hold then for each E > 0 and each a 2 <
there is a unique solution �(t) of (1.1) on [0; E].

Proof. For the given E > 0 �nd K > 0 satisfying (1.3) and(1.4), while T satis�es
(1.8) with

0 < T < T � < 1; KT � < � < 1: (2.1)

Divide [0; E] into n pieces of length S < T and with end points 0 = T0; T1; :::; Tn = E so
that

S = Ti � Ti�1 < T < 1: (2.2)

We will take two steps leading to an induction which generalizes the second step. The
�rst step takes place in a Banach space, but the subsequent step is in a complete metric
space.

Step 1. Let (M1; j � j1) be the Banach space of continuous functions � : [0; T1] ! <
with the supremum norm. De�ne P1 : M1 ! M1 by � 2 M1 which implies that

(P1�)(t) = g
�
t; a+

Z t

0
�(s)ds

�
+

Z t

0
A(t� s)f

�
s; a+

Z s

0
�(u)du

�
ds: (2.3)

Notice that if P1 has a �xed point �1, then

d
dt

�
a+

Z t

0
�1(u)du

�
= �1(t)

and

x(t) = a+
Z t

0
�1(s)ds

satis�es (D) with x(0) = a.
Let us see that we have a contraction. If �;  2 M1 then by (1.8)

Z t

0
j�(s) �  (s)jds � T �j��  j1 � j��  j1; KT � < �
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so

j(P1�)(t) � (P1 )(t)j � K
����a+

Z t

0
�(s)ds � a�

Z t

0
 (s)ds

����

+
Z t

0
jA(t� s)jK

Z s

0
j�(u) �  (u)jduds

� �j� �  j1 + j��  j1K
Z t

0
jA(s)jds

� j��  j1
�
�+

1 � �
2

�
=

1 + �
2

j��  j1;

a contraction with unique �xed point �1 solving (2.3) on [0; T1].
Step 2. Let (M2; j � j2) be the complete metric space of continuous functions

� : [T0; T2] ! < with the supremum metric and �(t) = �1(t) for T0 � t � T1. De�ne
P2 : M2 ! M2 by � 2 M2 which implies

(P2�)(t) = g
�
t; a+

Z t

0
�(s)ds

�
+

Z t

0
A(t� s)f

�
s; a+

Z s

0
�(u)du

�
ds: (2.4)

As �1 is a �xed point of P1 on [T0; T1] for 0 � t � T1 we have for any � 2 M2 that

(P2�)(t) = g
�
t; a+

Z t

0
�1(s)ds

�
+

Z t

0
A(t� s)f

�
s; a+

Z s

0
�1(u)du

�
ds

= �1(t) (2.5)

and so P2 does map M2 ! M2:
Let us see that P2 is a contraction. If �;  2 M2 then

j(P2�)(t) � (P2 )(t)j � K
����

Z t

0
[�(s) �  (s)]ds

����

+
Z t

0
jA(t � s)jK

����

Z s

0
[�(u) �  (u)]du

����ds:

Let T1 � t � T2 and �x s at any value 0 � s � T1. Then examine the last integral
above. As s � T1, then 0 � u � T1 and so �(u) =  (u) and that last integral is zero.
This is true for every value of s with 0 � s � T1. If j�j[T1;T2] denotes the sup then as
S = T2 � T1 < T �

Z T2

T1

j�(s) �  (s)jds � T �j��  j[T1;T2] � j��  j[T1;T2] = j��  j2: (2.6)

Hence we may continue the above display as

= K
����

Z t

T1

[�(s) �  (s)]ds
���� +

Z t

T1

jA(t� s)jK
Z s

T1

j�(u) �  (u)jduds

� KT �j��  j[T1;T2] +
Z t

T1

jA(t� s)jKj��  j[T1;T2]ds

( by a change of variable and j��  j2 = j��  j[T1;T2])

� j��  j2
�
�+

1 � �
2

�
=

1 + �
2

j��  j2
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a contraction with unique �xed point �2 on [0; T2]. Note that �1 = �2 on [0; T1] because
both are unique and the de�nition of the space demands it.

This Step 2 is the �rst step in the induction since it has the �rst complete metric
space with the function �1. We pattern the induction on M2 which uses �1 from Step 1,
the mapping P2 which truncates the integrals using the �1, and the �xed point �2 which
is the �nal product of Step 2 and upon which Step 3 relies.

Inductive hypothesis. Assume that we have a solution �i�1(t) satisfying (1.1) for
0 � t � Ti�1.

From this and the assumptions (1.2){(1.8) we will obtain a solution �i(t) satisfying
(1.1) for 0 � t � Ti. That will complete the induction for we can then reach E with the
solution �n satisfying (1.1) on [0; E]. The proof will then be complete.

Let �i�1 satisfy (1.1) on [0; Ti�1] for i � 1 � 1. Let (Mi; j � ji) be the complete
metric space of continuous functions � : [0; Ti] ! < with the supremum metric and for
0 � t � Ti�1 every function satis�es �(t) = �i�1(t). Next, we de�ne Pi : Mi ! Mi by
� 2 Mi which implies that

(Pi�)(t) = g
�
t; a+

Z t

0
�(s)ds

�
+

Z t

0
A(t� s)f

�
s; a+

Z s

0
�(u)du

�
ds:

Because �i�1 is a solution on [0; Ti�1] if 0 � t � Ti�1 then (Pi�i�1)(t) = �i�1(t) and so
the mapping is into Mi.

We now show that Pi is a contraction. If �;  2 Mi then

j(Pi�)(t) � (Pi )(t)j � K
����

Z t

0
[�(s) �  (s)]ds

����

+
Z t

0
jA(t� s)jK

����

Z s

0
[�(u) �  (u)]du

����ds

(as in Step 2 at this same point in the display and now Ti�1 � t � Ti )

= K
����

Z t

Ti � 1

[�(s) �  (s)]ds
���� +

Z t

Ti � 1

jA(t� s)jK
Z s

Ti � 1

j�(u) �  (u)jduds

� KT �j��  j[Ti � 1;Ti ] +
Z t

Ti � 1

jA(t� s)jKj��  j[Ti � 1;Ti ]ds

(by a change of variable and j��  ji = j��  j[Ti � 1;Ti ])

� j��  ji
�
�+

1 � �
2

�
=

1 + �
2

j��  ji;

a contraction with unique �xed point �i on [0; Ti]. Note that �i�1 = �i on [0; Ti�1] because
both are unique and the de�nition of the space demands it. 2

Theorem 2.2 Under the conditions of Theorem 2.1 there is a unique solution � of
(1.1) on [0;1).

Proof. Using Theorem 2.1 we construct a unique solution �n on every interval [0; n]
for every positive integer n. Extend each of those solutions to the interval [0;1) by
de�ning �n past n by the function ��

n = �n(n) for t > n. Thus we have a sequence of
uniformly continuous functions on [0;1) which converge uniformly on compact sets to a
continuous function � which is a solution of (1.1) because at every value of t the function
on [0; t] coincides with any �n for n > t. 2
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Abstract: The objective of this paper is three fold. Firstly, a new modeling approach
for direct contact membrane distillation (DCMD) is developed. Based on dynamic
bi-dimensional con�guration, an uncertain non linear state space model that takes
into account all the uncertainties generated by discretization errors and plant param-
eters variation is derived. It is worth noticing that most of the MD con�guration
processes have been modeled as steady-state one-dimensional systems. Stationary
two-dimensional MD models have been considered only in very few studies. The ob-
tained bi-dimensional state space model of DCMD process is also implemented using
Matlab and compared with data published in the literature. Secondly, it is theoreti-
cally demonstrated that, by measuring only the inlet and outlet temperatures of the
DCMD process, one can recover the temperature pro�le inside the DCMD process
using observers. This is an important point, since most of the existing literatures
compute the temperature pro�le by empirical methods without taking into account
disceretization errors and uncertainties. Thirdly, a new unknown input observer is
developed to estimate temperature polarization inside the membrane. The conver-
gence of the temperature estimation error to zero is theoretically proved and veri�ed
by simulation. Of particular interest, the designed observer can be used for the as-
sessment of temperature polarization phenomena and hence preventing some fouling
problems.
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1 Introduction

Membrane distillation (MD) process is an emerging technology for water treatment. The
driving force of the MD process results from the pressure di�erence of vapor formed by
a di�erence in solution’s temperature on both sides of a hydrophobic membrane [1]. The
advantages of DCMD lie in its simplicity, the need of only small temperature di�erences
and nearly 100% rejection of dissolved solids [1]. Furthermore, thanks to their low energy
demand, DCMD processes can be equipped with renewable energy equipment such as
solar collectors [2] and solar distillers [3].

Most of researches on DCMD focus on modeling the heat and mass transfer phe-
nomenon inside the membrane, and most of the MD con�guration processes have been
modeled as steady-state one-dimensional systems using empirical heat and mass transfer
equations [4]. Only few publications use stationary one or two-dimensional heat-transfer
equation to simulate a particular con�guration more accurately. Although many semi-
empirical models have been developed, a detailed model for temperature polarization on

at-plate MD processes is still lacking. [5]. In [4] theoretical modeling and experimental
analysis of direct contact membrane distillation has been done in steady-state. In [6] a
dynamic modeling of direct contact membrane distillation processes has been presented.
In [7] performance investigation of a solar-assisted direct contact membrane distillation
system is conducted.

This paper presents a di�erent approach using a new bi-dimensional dynamic model
to predict the membrane temperature and the pure water 
ux. It proposes to derive
an uncertain state model based on the �nite element approximation of the tempera-
ture partial di�erential equations (PDE) and then to build an observer to estimate all
temperatures and temperature dependant parameters inside the process from the only
measurable data which are inlet and outlet temperatures.

Because temperature distribution inside the membrane is not accessible for measure-
ment this observer is very useful and can be considered as a software sensor to estimate
it. The observer developed in this paper is designed in a cascade structure and is speci�c
to the presented DCMD model. It is useful as a means to monitor inner temperature
evolution in order to prevent and avoid severe or irreversible fouling situations by pre-
dicting their occurrence with a good timing and launching the prede�ned appropriate
maintenance routine [8].

The paper is organized as follows: in the next section, the theoretical equations
describing heat and mass transfer in DCMD are introduced and followed by a brief
description of fouling phenomenon and its e�ect on polarization coe�cient. In Section 3,
a new bi-dimensional state model for DCMD process is developed and simulated. After
that, the observability of the whole set of internal dynamic variables is demonstrated, and
the new unknown input observer that predicts inner temperature pro�les is presented in
Section 4. Simulations are conducted to show the e�ciency of the proposed observer.

2 DCMD Theoretical Modeling

In Direct Contact Membrane Distillation (DCMD) both sides of the membrane are in
direct contact with a liquid stream. On the upper side of the membrane shown in
Figure 1 the hot liquid (i.e. hot seawater) 
ows in the evaporator channel, whilst on the
bottom side, a cold liquid (i.e. cooled permeate or distillate) is circulated. Heat and mass
transfer occurs from the hotter to the colder side. The liquid in the evaporator channel is
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constantly re�lled and reheated, whilst the volume of the liquid in the permeate channel
increases and heats up. One of the main features of DCMD is that the gas gap between
the membrane surface and the condensate stream is very narrow and only exists due to
the hydrophobic nature of the membrane. This causes the temperature of the membrane
surface in contact with the condensate to be very close to that of the condensate stream
itself, thus allowing high temperature drops across the membrane, i.e. high driving forces
for mass transfer. Conversely, the direct contact con�guration causes a relatively high
heat loss as the membrane is the only barrier for the transfer of sensible heat [2].

Mathematical equations describing those phenomena are given in the following para-
graphs.

Figure 1: Schematic diagram of DC membrane distillation process [4].

2.1 Mass transfer

The mass transfer driving force across the membrane is the di�erence in saturated pres-
sure components on both membrane surfaces due to the temperature gradient. The
general mass 
ux form can be expressed as follows:

J = cm�P sat = cm
�
P sat

a � P sat
b

�
; (1)

where P sat
a , P sat

b are the saturated pressure of water on the hot and the cold feed
membrane surfaces respectively and cm is the membrane coe�cient.

For non-ideal binary mixtures [9], [10], the 
ux can be determined by:

J = cm
�
(1 � xNaCl)

�
1 � 0:5xNaCl � 10x2

NaCl
�

P sat
a � P sat

b
�

; (2)

where xNaCl is the mole fraction of NaCl in saline solution.
In the following, the index \s" stands for \side". I.e. s = a for the hot side and s = b

for the cold side.
Saturated pressures can be determined by the Antoine equation where Ts is the

temperature in
�
C; s = a; b:

P sat
s = 133:32 � 10(8:10765�( 1450:286

Ts+235 ) ): (3)

The membrane coe�cient cm in (1) can be estimated by a weighted sum via parame-
ters �(T ) and �(T ) of the Knudsen di�usion and the Poiseuille (viscous) 
ow models [11]:

cm = ck + cp;
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cm = 1:064 � (T )
"r

��m

r
Mw

RTm
+ 0:125� (T )

"r2

��m

MwPm

�vRTm
; (4)

where � (T ) and � (T ) are the Knudsen di�usion model and Poiseuille 
ow model con-
tributions, respectively, Mw is the molecular weight of water, Pm is the mean saturated
pressure in membrane, R is the gas constant, r is the pore radius, Tm is the mean temper-
ature in membrane, �m is the thickness of membrane, " is the porosity of membrane, �v
is the gas viscosity and � is the tortuosity factor. The tortuosity of a porous hydrophobic
membrane was estimated by [12].

2.2 Heat transfer

For a laminar and symmetrical 
ow, symmetrical temperature distribution and without
internal energy generation; the temperature propagation in DCMD process is described
by the following equation [10]:

�Cp

0

BB@
@T
@t

+ u
@T
@x

+ v
@T
@z| {z }

convection

1

CCA = k

0

BB@
@2T
@x2 +

@2T
@z2

| {z }
conduction

1

CCA : (5)

Considering that conduction e�ect is along x axis and that convection e�ect is along
z axis, we obtain the basic equation used in DCMD modeling [4]:

�Cp

�
@T
@t

+ v
@T
@z

�
= k

@2T
@x2 : (6)

Velocity along z axis is given by

v(x) = 6vs

�
x
ds

�
x2

d2
s

�
; (7)

where vs = v = Q
dsW is the mean velocity, Q the volumetric 
ow, W is the channel width

and ds is its height. Here da = db = d.
We rewrite (5) as follows:

@T
@t

=
k

�Cp

@2T
@x2 � v

@T
@z

= �
@2T
@x2 � v

@T
@z

; (8)

� =
k

�Cp
: (9)

"�" or convective heat transfer coe�cient is a time/temperature varying parameter [13]
since it depends on thermal conductivity (k), speci�c heat (Cp ) and the density of the
seawater (�). One can consider variation of � using empirical relations found in speci�c
literature such as those proposed in [4].

2.3 Boundary conditions

The boundary conditions for modelling the DCMD process are given in [4]:
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8
>>>><

>>>>:

Ts (x; 0) = Ts;in;
dTs(0;z)

dx = 0;
ka

@Ta(d;z)
@x = �

h
�J + km

�m
(Ta (d; z) � Tb (d; z))

i
;

kb
@Tb(d;z)

@x =
h
�J + km

�m
(Ta (d; z) � Tb (d; z))

i
:

(10)

2.4 Fouling and polarization coe�cient in DCMD

2.4.1 Fouling

Fouling in general is the accumulation of unwanted deposits (foulants) on the surface
or inside the pores of the membrane that degrade its permeation 
ux and salt rejection
performances (see [8] and references therein such as [14] and [15] ). It is one of the major
problems in membrane-based processes that reduce the temperature di�erence across
the membrane or increase in temperature polarization leading to lesser driving force [16]
(Figure 2).

Figure 2: Fouling layer on membrane [8].

The foulants found in membrane technology can be divided into three broad groups
according to the fouling material [17]. (a) Inorganic fouling or the deposition of inorganic
particles such as calcium carbonate, calcium sulfate, NaCl, ferric oxide, aluminum oxide,
etc; (b) organic fouling or the deposition of organic matters such as humic acid, fulvic
acid, protein, polysaccharides, and polyacrylic polymers and (c) biological fouling caused
by microorganisms such as bacteria and fungi, sludge, algae, yeast, etc. In most cases,
a single fouling mechanism does not occur in real MD processes, but a combination of
di�erent fouling materials and mechanisms that makes it more complicated to deal with.

Fouling occurs as an external surface fouling referring to the build-up of deposits
or gel-like layers on the outer surface of the feed-side of the membrane. Two types of
fouling layers are observed [18] both of which decrease the permeate 
ux: the porous
that provides additional heat resistance, thus decreasing the permeate 
ux and the non-
porous deposit layers which reduce the transport of water vapor across the membrane.
It also occurs as pore blocking fouling which happens when scales or foulants are formed
inside the pores of the membrane causing a partial blocking or gradual narrowing of the
pore, or a complete pore blocking (Figure 3) [19].
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Figure 3: Surface (external) and pore-blocking (internal) fouling [8].

External surface fouling is usually reversible and can be eliminated by chemical clean-
ing, while internal fouling or pore blocking is in most cases, irreversible leading to damage
of the membrane due to compaction of foulants [20].

Fouling is a�ected by di�erent factors such as [21] (a) foulant characteristics (concen-
tration, molecular size, solubility, di�usivity, hydrophobicity, charge,etc.); (b) membrane
properties (hydrophobicity, surface roughness, pore size, surface charge, and surface func-
tional groups); (c) operational conditions (
ux, solution temperature, and 
ow velocity),
and (d) feed water characteristics (solution chemistry, pH, ionic strength, and presence
of organic/ inorganic matters).

2.4.2 Temperature polarization coe�cient

In most MD fouling investigations, membrane fouling is represented by the permeate 
ux
decline [22]. Although membrane fouling is generally interpreted by 
ux decline, this
approach is inadequate for characterizing fouling development in MD, especially due to
the e�ect of temperature in the operation [23] , [24]. Characterizing the foulant on the MD
membrane would provide valuable guidance to the e�ective application of MD operation
such as membrane cleaning as well as deciding the necessity for a pretreatment [25]. It
is then important to investigate fouling situations taking into account the temperature
distribution characteristics such as Temperature Polarization Coe�cient (TPC).

The temperatures at the boundary layers of both the feed (hot side) and permeate
(cold side) Tam and Tbm respectively are di�erent from those at the bulk temperatures
Ta and Tb due to temperature polarization. Changes in the driving force (i.e., di�erence
in partial water vapor pressure caused by temperature di�erence) are usually evaluated
through TPC given by T P C = Tam�Tbm

Ta�Tb
. It indicates the thermal e�ciency of the

MD system, wherein a value nearing unity suggests good thermal e�ciency, and values
nearing zero means otherwise [26].

TPC was found to decrease with the decrease of the pore diameter of the fouling
layer and also with the decrease of the membrane resistance with respect to the external
resistance (see [8] for more information about fouling e�ects on TPC and methods for
fouling monitoring and cleaning).
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3 State Space Model Developpement

3.1 Formulation

Since the temperature has a bidimensional space distribution T = T (x; z), we �rst
consider (M + 1) columns separated by constant distance �z along the z axis with
indexes j = 0; : : : M that divide each side of the process into (M) subsystems �s

j=1;::;M .
In both sides of the process, we consider (N + 2) lines separated by constant distance
�x along the x axis with indexes i = 0; : : : N + 1. Let jT s;i be the temperature of the
point (i; j) de�ned by column j and line i in the side s as depicted in Figure 4 bellow.

Figure 4: System subdivision.

3.1.1 Derivative terms approximation

Most papers simplify the partial di�erential equations into an ordinary di�erential equa-
tions system by using the �nite di�erence techniques derived from Taylor’s formula with
�rst or second order accuracy [4], [13]

8
<

:

f
00

(x) = 1
h2 [f (x + h) � 2f (x) + f(x � h)] ;

f
0
(x) = 1

h [f (x + h) � f (x)] or
f

0
(x) = 1

2h [�3f (x) + 4f (x + h) � f (x + 2h)] ;
(11)

so that for a given point (i; j), conduction term along x axis can be approximated by

@2 �jTi
�

@x2 =
1

�x2

�jT i+1 � 2jT i + jT i�1
�

(12)

and the convection term along z axis by

@
�jTi

�

@z
=

1
�z

�j+1T i � jT i
�

: (13)

For our modeling purpose we consider that temperature propagation along z axis
is low and can be approximated by a perturbed linear function, therefore we use the
following expression for @(j Ti )

@z where j�i is a bounded perturbation term resulting from
modeling approximation

@
�jTi

�

@z
=

1
�z

�jT i � j�1T i
�

+ j�i : (14)
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The velocity pro�le for the considered point (i; j) is the same for all columns and is
given by

(
vi = 6v

�
xi
d � xi

2

d2

�
;

x0 = 0; xi = i:�x; xN+1 = d:
(15)

Writing (8) for a given point (i; j) in "s" side and substituting ((12),(14)) in it, gives:

@
�jTs;i

�

@t
= j�s;i

@2 �jTs;i
�

@x2 � vi
@

�jTs;i
�

@z
; (16)

@
�jTs;i

�

@t
=

�
j�s;i

1
�x2

�
jT s;i+1 � 2jT s;i + jT s;i�1

�
�

vs;i

�z
jT s;i

�
+

+
vs;i

�z
j�1T s;i + vs;i

j�s;i :
(17)

The sign of
�

vi
j�s;i

�
does not matter because the perturbation term j�s;i is unknown

and parameter � for a given subsystem �s
j is (see [4] for ks;i ; �s;i expressions)

j�s;i =
ks;i

�s;iCps
: (18)

3.2 Notations and boundary conditions

3.2.1 State variables, output, and input

For a given subsystem �s
j , consider lines with indexes i = 1; : : : N and build a state

vector where each state variable re
ects the temperature of (i; j) point

jxs =
�jxs;1 : : : jxs;N

�T =
h

jT s;1 : : : jT s;N

iT
: (19)

Figure 5: Subsystems in cascade.

Since the 
ow is laminar one can consider that the output of each subsystem is its
own entire state vector. In addition, due to boundary conditions the measurable output
temperature of the whole DCMD process given by the last subsystem (j = M) is the
same at all lines. That means:

jys = jCs
jxs = jxs 8 j: (20)
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With the choices made above for jxs and jys, it is easy to see from (17) that the
input of each subsystem is the output of the previous one, i. e.

jus = j�1ys: (21)

3.2.2 Boundary conditions

Application of boundary conditions (10) gives:

At the �rst (resp. last) column: j = 0 (resp. j = M) that correspond to the �rst and
last inner vertical wall of the DCMD process for both sides, the temperature is the same
at all lines and is equal to the inlet (resp. outlet) temperature:

� 0T s;i = Ts;in 8 i;
M T s;i = Ts;out 8 i: (22)

At the �rst line i = 0 (corresponds to the �rst inner horizontal wall of the DCMD
process)

jT s;0 =
4jT s;1 � jT s;2

3
: (23)

At the last line i = N +1 (corresponds to the boundary layer with the membrane) [4].

For the hot side

jT a;N+1 =
1
3

�
4jT a;N � jT a;N�1 �

2�x
ka;N

�
�J +

km

�m

�
jT a;N � jT b;N

���
: (24)

And for the cold side

jT b;N+1 =
1
3

�
4jT b;N � jT b;N�1 +

2�x
kb;N

�
�J +

km

�m

�
jT a;N � jT b;N

���
: (25)

3.3 Parameter variation and modelling approximation

Considering for both sides that parameter j�s;i has small unknown but bounded vari-
ations around a nominal well-known constant value �sn gives (index n means nominal
value) :

j�s;i = �sn + �j�s;i ; s = fa; bg ; (26)

8
<

:

�sn = kan
�snCps

;

���j�s;i
�� 6 ��s ; ��s > 0:

(27)

In addition, the bounded perturbation term j�s;i introduced in (14) is such that:
���j�s;i

��� 6 ��s ; ��s > 0 : (28)
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Then, gathering all variations �j�s;i in one vector j��s and all perturbation terms
j�s;i in one vector j��s gives :

j��s =
h

j��s;1 : : : j��s;N

iT
=

�
�j�s;1 : : : �j�s;N

�T ; (29)

j��s =
h

j��s;1 : : : j��s;N

iT
=

h
j�s;1 : : : j�s;N

iT
: (30)

3.4 Equations for state model

The previous states, inputs, and outputs choices, with parameter variation and pertur-
bation terms (17), give a state model of temperature variation at each point (i; j) of the
whole process as follows:

j _xs;i =
�
�sn

1
�x2

�
jxs;i+1 � 2jxs;i + jxs;i�1

�
�

v;s;i

�z
jxs;i

�
+

vs;i

�z
jus;i+

+
1

�x2

�
jxs;i+1 � 2jxs;i + jxs;i�1

�
j��s;i + vs;i

j��s;i :
(31)

Equation (31) needs to be detailed for indexes i = 1 and i = N in order to include
boundary conditions.

For i = 1 , jxs;0 is obtained from (23), and then (31) gives

j _xs;1 =
��

�
2
3

�sn

�x2 �
vs;1

�z

�
jxs;1 +

2
3

�sn

�x2
jxs;2

�
+

vs;1

�z
jus;1+

+
1

�x2

�
�

2
3

jxs;1 +
2
3

jxs;2

�
j��s;1 + vs;1

j��s;1 :
(32)

For 1 < i < N , (31) gives:

j _xs;i =
�

�sn

�x2
jxs;i�1 �

�
2

�sn

�x2 +
vs;i

�z

�
jxs;i +

�sn

�x2
jxs;i+1

�
+

vs;i

�z
jus;i+

+
1

�x2

�
jxs;i�1 � 2jxs;i + jxs;i+1

�
j��s;i + vs;i

j��s;i :
(33)

For i = N , getting jxa;N+1 and jxb;N+1 from (24-25) and then considering the
following coupling term between �a

j and �b
j

jxab = 2�x
�

�J +
km

�m

�
jxa;N � jxb;N

��
(34)

gives

jxa;N+1 = 1
3

h
4jxa;N � jxa;N�1 �

j xab
ka;N

i

jxb;N+1 = 1
3

h
4jxb;N � jxb;N�1 +

j xab
kb;N

i

9
>>=

>>;
: (35)

This has a compact form as we introduce the variable s
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s =
2s � a � b

b � a
=

�
�1; if s = a;
+1; if s = b: (36)

Equations (35) become:

jxs;N+1 =
1
3

�
4jxs;N � jxs;N�1 + s

jxab
ks;N

�
: (37)

Thus (31) gives for i = N

j _xs;N =
�

2
3

�sn

�x2
jxs;N�1 �

�
2
3

�sn

�x2 +
vs;i

�z

�
jxs;N

�
+

vs;N

�z
jus;N +

+
�sn

�x2 s
jxab

3ks;N
+

1
�x2

�
2
3

jxs;N�1 �
2
3

jxs;N +
s

3ks;N

jxab

�
j��s;N + vs;N

j��s;N :
(38)

Now, before presenting our �rst proposition about the new in cascade state model for
the DCMD, in particular the state model of a given subsystem �s

j , let us introduce the
following matrices, derived from (32), (33) and (38).

� dynamic matrices

jAs =

2

64

jAs1
...

jAsN

3

75 : (39)

The lines of jAs and their elements are
8
>>>><

>>>>:

jAs1 = [ as1;1 as1;2 0 0 : : : 0] ;

jAsi = [0 : : : 0 asi;i�1 asi;i asi;i+1 0 : : : 0] ;

jAsN = [0 : : : 0 asN;N�1 asN;N ] ;

9
>>>>=

>>>>;

(40)

8
>>>><

>>>>:

as1;1 = �
�2

3
�sn
�x2 + vs;1

�z

�
; as1;2 = 2

3
�sn
�x2 ;

asi;i�1 = �sn
�x2 ; asi;i = �

�
2 �sn

�x2 + vs;i
�z

�
; asi;i+1 = �sn

�x2 ;

asN;N�1 = 2
3

�sn
�x2 ; asN;N = �

� 2
3

�sn
�x2 + vs;N

�z

�
;

9
>>>>=

>>>>;

(41)

� input and output matrices

jBs = diag
�jBsi

�
; jBsi = vs;i

�z 8 i;

jCs = IN ; 8 j;

9
=

;
(42)

� perturbation term.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 372{397 383

Let j�s be the vector of all unknown bounded uncertainties due to parameter variation
and modeling approximation and j	 s

�jxs; j�s
�

be the vector containing all the resulting
perturbation terms. It follows:

j�s =
� j��s

j��s

�
; (43)

j	 s
�jxs; j�s

�
=

2

64

j	 s1
...

j	 sN

3

75 : (44)

For i = 1

j	 s1 =
1

�x2

�
�

2
3

jxs;1 +
2
3

jxs;2

�
j��s;1 + vs;1

j��s;1 : (45)

For 1 < i < N

j	si =
1

�x2

�
jxs;i�1 � 2jxs;i + jxs;i+1

�
j��s;i + vs;i

j��s;i : (46)

For i = N :

j	 sN =
�sn

�x2 s
jxab

3ks;N
+

1
�x2

�
2
3

jxs;N�1 �
2
3

jxs;N +
s

3ks;N

jxab

�
j��s;N + vs;N

j��s;N ;

j	sN =

"
�sn

�x2 s
jxab

3ks;N

1
j��s;N

+
1

�x2

�
2
3

jxs;N�1 �
2
3

jxs;N +
s

3ks;N

jxab

�#
j��s;N

+vs;N
j��s;N :

(47)

A more compact expression of j	 s
�jxs; j�s

�
would be :

j	 s
�jxs; j�s

�
= j	 s�

j��s + j	 s�
j��s = j	 s

�jxS
� j�s (48)

such that

j	 s� = diag
�

j	s�i

�
; j	 s� = diag

�j	 s�i
�

;

j	 s
�jxS

�
=

h
j	 s�

j	 s�

i
;

9
>>=

>>;
; (49)

j	s�i and j	 s�i are the coe�cients of j��s;i and j��s;i in relations (45) to (47) and
j�s is introduced in (43).

In the following, we give the statement of the uncertain bi-dimensional cascade state
model for DCMD process.
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Proposition 3.1 Consider the DCMD process theoretically modeled in Section 2 with
the above mentioned matrices and vectors jAs; jBs; jCs; jxs; jus; jys; j	 s and j�s.
Then, the inner temperature pro�le can be predicted using the following set of state space
models de�ned for subsystems �s

j (Figure 5)

�s
j :

� j _xs = jAs
jxs + jBs

jus+j	 s
�jxS

� j�s;
jys=jCs

jxs j = 1; : : : M: (50)

Proof. Direct consequence of the above developments and relations. 2

Remark 3.1

� The model is built in cascade as represented in Figure 5 where each subsystem �s
j

is supplied by the previous one ( �s
j�1) and acts on the next one (�s

j+1) .

� This form of bi-dimensional state model of DCMD process is introduced for the �rst
time to the best of our knowledge [5] and gives a complete description of the process
behavior. It is appropriate for observer based control/monitoring approaches as we
will demonstrate in next sections.

� On the basis of this model, we will build an unknown input observer which gives
access to suitable information such as polarization ratio and polarization coe�cient
since it permits to estimate all (i; j) points’ temperatures.

� The aim of the work is to give a means to monitor inner temperature evolution
in order to prevent and avoid severe or irreversible fouling situations by predict-
ing their occurrence with a good timing and launch the prede�ned appropriate
maintenance routine.

� j	s
�jxS

� j�s behaves as a perturbation term and contains errors due to approxi-
mation and parameter variation.

� Simulations were conducted to compare model results with some literature data.

3.5 Model simulation

Simulation of the developed state model showed steady state results comparable to [4]
using the same data such as geometry, physical properties and operating conditions. The
bi-dimensional simulation depicted in Figure 6 shows that temperature in the hot side
decreases along x and z axes of the membrane, in the same way the cold side temperature
increases along the x and the z axes, which is in agreement with the polarization phe-
nomenon. Figure 7 to Figure 10 show vertical and longitudinal temperature distribution
as well as the variation of mass 
ux densities and velocity e�ect on pure water production
and membrane temperature.

4 Prediction of Temperature Pro�les Using Observers

4.1 States and inputs observing

In practice, only the inlet and outlet temperatures are measurable. The pro�le and longi-
tudinal temperature distributions are not accessible but are very important because they



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 372{397 385

Figure 6: Temperature distribution in two dimensions (up: hot, down: cold).

Figure 7: Temperature along x axis for a given z.

Figure 8: Temperature distribution along the membrane.

describe the polarization phenomenon which is the major driving force for pure water pro-
duction. The need of an observer arises. The observer should estimate all temperatures
inside the process and from those temperatures one could estimate temperature-variable
parameters such as polarization coe�cient, polarization ratio, and pure water 
ux.
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Figure 9: Velocity e�ect on water production.

Figure 10: Velocity e�ect on membrane temperature.

It was stated in Section 3, that the measurable outlet temperature is the same at all
lines of the last subsystem �s

M which gives a measurement of the entire output vector.
This is due to boundary condition, laminar 
ow and because generally channel depth (d)
is small in DCMD.

On the other hand, outputs, states and inputs have equivalent roles: knowing the
state of a subsystem, gives its output and the input of the next one. Conversely, the
input informs about the output and the state of the previous one. This motivates the
need to build an unknown input observer (UIO) starting from the known (measurable)
output of the last subsystem �s

M . The proposed global UIO is built in cascade form (like
the state model) as shown bellow in Figure 11 for one side of the process.

The known output M ŷs (so the state) of the last subsystem �s
M is used with the UIO

to estimate its unknown input vector which is the output (and the state) of the previous
subsystem �s

M�1 (M ûs = M�1ŷs). The obtained output (M�1ŷs) is then used with the
UIO to estimate the input of the subsystem �s

M�1. This principle is applied to ascend
to the �rst subsystem which has a known input (inlet temperature) and so doing one can
have access to all temperatures inside the process.

This structure has a lot of advantages; increasing the accuracy of the model by in-
creasing the number of subsystems; when estimating temperatures inside the process, it
is possible to estimate the 
ux in each part of the membrane, the total 
ux, and di�erent



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 372{397 387

Figure 11: Diagram of the unknown input observer (UIO).

parameters such as polarization ratio and polarization coe�cient.

Proposition 4.1 The states and inputs of models de�ned in equation (50) are fully
observable.

Proof. Considering the model of �s
j and keeping in mind that for 1 < j < M , the

state vector is the output of the subsystem and the input of the next one, we gather
all state vectors in one global vector and write the global unperturbed state model that
includes all subsystems. Then, we prove the global state observabilty by showing that
global observabilty matrix has a full rank. State and input observablity of each subsystem
�s

j follows from the global state observabilty as they are parts of the global state vector.
The unperturbed model of �s

j (without j	 s
�jxS

� j�s ) is :

� jCs = IN
jus = j�1ys = j�1Csj�1xs = j�1xs

�
=) j _xs = jAs

jxs + jBs
j�1xs ; (51)

which gives for j = M; : : : ; 1
8
><

>:

M _xs = MAs
M xs + M Bs

M�1xs;
...

1 _xs = 1As
1xs + 1Bs

0xs;
(52)

with the compact writing � _Xg = AgXg + BgUg;
Yg = CgXg; (53)

where Xg is the global [(N � M) � 1] state vector, Ug = 0xs = 1us and Yg = Mys are
both external measurable input and output temperatures.

Xg =
h

M xs
T M�1xs

T : : : 1xs
T

iT
; Ug = 1us; and Yg = M ys = M Cs

M xs = Mxs ;
(54)

where Ag is a square [(N � M) � (N � M)] matrix formed by (N � N) sized zero matrices
except for the main diagonal blocks formed by matrices jAs , j = M; : : : ; 1 and upper
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next diagonal blocks formed by matrices jBs , j = M; : : : ; 2,
0

BBBBBBBBBBBBBBB
@

Ag =

2

64

Ag1
...

AgM

3

75 ;

8
>>>><

>>>>:

Ag1 =
� �M As

� �M Bs
�

[0] : : : [0]
�

;

Agj =
�

[0] : : : [0]
�jAs

� �jBs
�

[0] : : : [0]
�

;

AgM =
�

[0] : : : [0]
�1As

� �
;

� � � � � � � � � � � � � � � � � � � � � � � � �

Bg =

2

6664

[0]
...

[0]�1Bs
�

3

7775
; Cg =

� �MCs
�

[0] : : : [0]
�

= [ [IN ] [0] : : : [0] ] :

1

CCCCCCCCCCCCCCC
A

(55)

Observability matrix is calculated as follows

O (Ag; Cg) =

2

64

O1
...

OM

3

75 =

2

6664

Cg
CgAg

...
CgAM�1

g

3

7775
; (56)

where O (Ag; Cg) is triangular due to the particular form of Cg and Ag

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

O1 = Cg = [[IN ] [0] : : : [0]] ;

O2 = CgAg =
��

M As
� �

MBs
�

[0] : : : [0]
�

;

O3 = O2Ag =
�
[O31] [O32]

�M Bs
M�1Bs

�
[0] : : : [0]

�
;

O4 = O3Ag =
�
[O41] [O42] [O43]

�M Bs
M�1Bs

M�2Bs
�

[0] : : : [0]
�

;
...

Or = [[Or1] : : : [Orr�1] [Orr] [0] : : : [0]] ;

(57)

with diagonal blocks given by
�

O11 = IN ;
Orr =

Qk=r�2
k=0

M�kBs:
(58)

This yields the simple expression of its determinant

jO (Ag; Cg)j =
Y

r

jOrrj : (59)

Due to regularity of all jBs matrices (
��jBs

�� 6= 0) it follows that O (Ag; Cg) has a full
(N � M) rank and thus the global state Xg is fully observable. The state and input of all
subsystems �s

j are observable since they are parts of the global state vector. 2

4.2 Observer design

The state-models obtained above have the same form for all subsystems in both sides.
In order to avoid useless notations, we built the observer (without loss of generality) on
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the basis of the following state form where vectors u; x; y and � and matrices A; B; C
and 	 respectively have the same form and role as in (50)

�
_x = Ax + Bu + 	 (x) �;
y = Cx: (60)

Based on the \known" output of system (60) the design aim is to ensure that observer
state and input (x̂; û) converge to the system state and input (x; u) even with the e�ect
of the unknown perturbation term 	 (x) �. We deal with the worst case by considering
the maximum possible deviation of � since we don’t need a precise estimation for it.

Proposition 4.2 Consider the perturbation term 	 (x; �) introduced in (44), and a
vector �m, such that

max
�

k�k ;



�̂





�

6 k�mk 6 �� ; (61)

where �̂ is the estimate of � and �� is a positive scalar. Then, 	 has the following
properties:

1) 	 (x; �) is bounded on � i.e.
8
><

>:

k	 (x; �)k 6 k	 (x; �m)k 6 �� k	 (x)k ;



	

�
x; �̂

�


 6 k	 (x; �m)k 6 �� k	 (x)k :
(62)

2) 	 (x; �) is Lipchitz on x i.e.

9 �	 > 0 j k	 (x; �) � 	 (x̂; �)k 6 �	 kx � x̂k 6 �	 ~x (63)

and 


	 (x) � � 	 (x̂) �̂



 = k�	k 6 �	 �� ~x : (64)

Proof. Property 1 results from the multiplicative form of 	 (x; �) given in (48).
Properties 2 of 	 are proved in appendix. 2

These properties are used in the following.

Proposition 4.3 Consider the state space model (60) and the following unknown
input observer: 8

<

:

_̂x = Ax̂ + Bû + 	 (x̂) �̂ + L (y � ŷ) ;
ŷ = Cx̂;
_̂u = �(y � ŷ):

(65)

Then, estimation errors ~x = x � x̂ and ~u = u � û converge asymptotically to zero
if we �nd symmetric positive-de�nite matrices P , R and gains �, L with appropriate
dimensions that ful�ll the following LMI condition:

" h
(A � LC)T P + P (A � LC) + 2�	 ��P

i �
P B � CT �T R

�
�
BT P � R�C

�
0

#

< 0: (66)
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Proof. State estimation error dynamic is:

_~x = (A � LC) ~x + B~u+
�

	 (x) � � 	 (x̂) �̂
�

;

_~x = (A � LC)~x + B~u + �	 : (67)
Dynamics of u are negligible with respect to û due to earlier supposed almost linear

temperature propagation along z axis. Thus :
_~u = _u � _̂u = _u � �C~x = ��C~x : (68)

Now consider the Lyapunov function ( [27], [28]) with symmetric positive-de�nite
matrices P , R:

V = ~xT P ~x + ~uT R~u; (69)
_V = _~x

T
P ~x + ~xT P _~x + ~uT R _~u + _~u

T
R~u;

_V = _~x
T

P ~x + ~xT P _~x � ~uT R�C~x � ~xT CT �T R~u;
_V = ~xT

h
(A � LC)T P + P (A � LC)

i
~x + ~uT BT P ~x

+~xT P B~u+2~xT P �	 � ~uT R�C~x � ~xT CT �T R~u
;

_V = ~xT
h
(A � LC)T P + P (A � LC)

i
~x + ~uT �

BT P � R�C
�

~x
+~xT �

P B � CT �T R
�

~u+2~xT P �	 :
(70)

From (64):
2~xT P �	 � 2�	 �� ~xT P ~x : (71)

Therefore,

_V � ~xT
h
(A � LC)T P + P (A � LC) + 2�	 ��P

i
~x + ~uT �

BT P � R�C
�

~x
+~xT

�
P B � CT �T R

�
~u

(72)

or also _V � [~x ~u]T MV

�
~x
~u

�
:

MV is a matrix given by

MV =

" h
(A � LC)T P + P (A � LC) + 2�	 ��P

i �
P B � CT �T R

�
�
BT P � R�C

�
0

#

: (73)

The estimation errors (~x; ~u) asymptotically converge to zero if we �nd matrices �, L,
P and R that give a negative-de�nite _V ( _V < 0). This condition can be announced in
the LMI form of Proposition 4.

_V < 0 , MV < 0 ,
" h

(A � LC)T P + P (A � LC) + 2�	 ��P
i �

P B � CT �T R
�

�
BT P � R�C

�
0

#

< 0 :
(74)

2

Remark 4.1

� The LMI given in (66) can be solved using the LMI toolbox of MATLAB.

� The proposed observer is similar in spirit the adaptive observers developed in [29],
[30], [31], [32].
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4.3 Observer simulation

Observer simulation generated a distribution of internal temperatures comparable to
those obtained by the model as shown in Figure 12. Figures 13 and 14 show convergence
of state estimation errors to zero respectively for hot and cold stream.

Figure 12: Temperature distribution obtained by the observer.

Figure 13: State error convergence in hot side.

Figure 14: State error convergence in cold side.
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Figure 15: Temperature distribution along z axes.

Figure 16: Temperature estimating error along z axes.

Figure 17: Pure water 
ux production estimation error.

Other simulations have been made using a di�erent set of parameters for the observer.
Figures 15 and 16 show a good estimation of longitudinal temperature distribution
compared to those obtained using the model, while Figure 17 shows the ability of the
observer to estimate pure water production under varying working conditions (inlet
temperature decreases at t=400s) and Figure 18 shows the evolution of temperature
polarization coe�cient estimating error for a given longitudinal position.
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Figure 18: Polarization coe�cient estimating error inside DCMD.

Having a good TPC estimation can be very helpful when investigating fouling situa-
tions on the basis of pure water decrease information. Thus, the observer-based approach
would serve as a means to make further studies about fouling characterization considering
in the same time temperature polarization e�ect on pure water production.

5 Conclusion

In this paper, an observer-based approach is proposed to estimate the temperature pro-
�les inside DCMD unit. This allows predicting the polarization coe�cient of the latter
and hence can be used to monitor fouling situations. Of particular importance, the
convergence of the observation error is proved using Lyapunov direct method and LMI
constraints. The performed simulations show the e�ectiveness of the proposed approach
which can be generalized to others types of membrane distillation processes.

Appendix: 2nd Property of 	 (x; �)

The objective is to verify that 	 (x; �) is Lipchitz on x i.e.

9 �	 > 0; k	 (x; �) � 	 (x̂; �)k � �	 kx � x̂k � �	 ~x : (75)

For more simplicity, relations (43) to (49) describing the vector j	s
�jxs; j�s

�
of all

perturbation terms, are used without indexes s and j. Therefore, given that 	� in (49)
does not depend on x, then for the same constant vector � = [�� �� ]T , (48) gives:

	 (x; �) � 	 (x̂; �) = [	� (x) � 	� (x̂)] �� : (76)

It is then su�cient having (61) to verify that 	� (x) is Lipchitz on x

k	 (x; �) � 	 (x̂; �)k � k	� (x) � 	� (x̂)k k��k �
k	� (x) � 	� (x̂)k k�mk � �� k	� (x) � 	� (x̂)k :

(77)

Consider the vector �	� = 	� (x) � 	� (x̂) = [�	�;i] ; i = 1; : : : ; N such that

k	 (x) � 	 (x̂)k2 = k�	�k2 =
NX

i=1

(�	�;i)
2 (78)
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in the following we will make use of this simple property :

(p � d)2 � 0 , p2+d2 � �2pd : (79)

We have for i = 1
�	�;1 =

2
3

1
�x2 (�~x1 + ~x2) ;

(�	�;1)2 =
4
9

1
�x4

�
~x2

1 + ~x2
2 � 2~x1 ~x2

�
:

Using (79) gives : �2~x1~x2 � ~x2
1 + ~x2

2 . Then

(�	�;1)2 �
8
9

1
�x4

�
~x2

1 + ~x2
2
�

�
1

�x4

�
~x2

1 + ~x2
2
�

: (80)

For 1 < i < N
�	�;i =

1
�x2 (~xi�1 � 2~xi + ~xi+1) ;

(�	�;i)
2 =

1
�x4

�
~x2

i+1 + 4~x2
i + ~x2

i�1 � 4~xi+1 ~xi � 4~xi~xi�1 + 2~xi+1 ~xi�1
�

:

Using (79) gives 2~xi+1 ~xi�1 � ~x2
i+1 + ~x2

i�1, �4~xi+1 ~xi � 4~x2
i+1 + ~x2

i , and �4~xi~xi�1 �
4~x2

i�1 + ~x2
i . Thus

(�	�;i)
2 �

6
�x4

�
~x2

i+1 + ~x2
i + ~x2

i�1
�

: (81)

For i = N :

�	�;N =
1

�x2

�
2
3

(~xN�1 � ~xN ) +
�

�n

��;N
+ 1

�
~xab

�
�

1
�x2

�
2
3

(~xN�1 � ~xN ) + �1 ~xab

�
;

where �1 is a majoration of
�

�n
��;N

+ 1
�

and ~xab obtained from (34) veri�es :

~xab = �2xkm
�m

(~xa;N � ~xb;N ) ) ~x2
ab =

�
2�xkm

�m

�2
(~xa;N � ~xb;N )2 � �2 ~x2

N where �2 is
an appropriate majoration.

It follows:

(�	�;N)2 �
1

�x4

"�
2
3

(~xN�1 � ~xN )
�2

+ 2
2�1

3
~xab (~xN�1 � ~xN ) + �2

1 ~x2
ab

#

: (82)

As for �	�;1 we obtain
� 2

3 (~xN�1 � ~xN )
�2 � ~x2

N + ~x2
N�1 and (79) gives:

2~xab (~xN�1 � ~xN ) � ~x2
ab + (~xN�1 � ~xN )2 � �2 ~x2

N + 2~x2
N + 2~x2

N�1 .
Gathering the terms and taking �N =

�
1 + �2

2�1
3 + 2 2�1

3 + �2
1�2

�
, one gets:

(�	�;N )2 �
1

�x4

�
~x2

N

�
1 + �2

2�1

3
+ 2

2�1

3
+ �2

1�2

�
+ ~x2

N�1

�
1 + 2

2�1

3

��

(�	�;N )2 �
�N

�x4

�
~x2

N + ~x2
N�1

�
: (83)
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Finally from (80), (81)-(83)

NX

i=1

(�	�;i)2 = (�	�;1)2 +
N�1X

i=2

(�	�;i)2 + (�	�;N)2

�
1

�x4

"

~x2
1 + ~x2

2 + 6
N�1X

i=2

�
~x2

i+1 + ~x2
i + ~x2

i�1
�

+ �N
�
~x2

N + ~x2
N�1

�
#

�
max (6; �N )

�x4

"

~x2
1 + ~x2

2 +
NX

i=3

~x2
i +

N�1X

i=2

~x2
i +

N�2X

i=1

~x2
i + ~x2

N + ~x2
N�1 + ~x2

1 + ~x2
N

#

NX

i=1

(�	�;i)
2 �

3max (6; �N )
�x4

NX

i=1

~x2
i (84)

and

k	� (x) � 	� (x̂)k �
r

3max (6; �N)
�x4

vuut
NX

1

~x2
i : (85)

There exists �	 > 0 such that

k	 (x; �) � 	 (x̂; �)k � �	 kx � x̂k � �	 ~x ;

i.e. 	 (x; �) is Lipschitz on x.
From the above inequality and relation (61), one has




	 (x) � � 	 (x̂) �̂



 = k�	k � �	 �� ~x :

2

References

[1] Lawson, K.W. and Lloyd, D.R. Membrane distillation II: Direct contact MD. Journal of
Membrane Science 120 (1) (1996) 123{133.

[2] Koschikowski, J., Wieghaus, M. and Rommel, M. Solar thermal-driven desalination plants
based on membrane distillation. Desalination 156 (1-3) (2003) 295{304.

[3] De Andrs, M.C. Doria, J., Khayet, M., Pena, L. and Mengual, J.I. Coupling of a membrane
distillation module to a multi e�ect distiller for pure water production. Desalination 115
(1) (1998) 71{81.

[4] Chen, T., Ho, C., and Yeh, H. Theoretical modeling and experimental analysis of direct
contact membrane distillation. Journal of Membrane Science 330 (1-2) (2009) 279-287.

[5] Hitsov, I., Maere, T., De Sitter, K., Dotremont, C. and Nopens, I. Modelling approaches
in membrane distillation: A critical review. Separation and Puri�cation Technology 142
(2015) 48{64.

[6] Bin Ashoor, B., Fath, H., Marquardt,W. and Mhamdi, A. Dynamic modeling of direct con-
tact membrane distillation processes. In: Proceedings of the 11th International Symposium
on Process Systems Engineering. Singapore, 2012, P. 15{19.

[7] Kim, Y.D, Thu, K., Gha�our, N., and Choon Ng, K. Performance investigation of a solar-
assisted direct contact membrane distillation system. Journal of Membrane Science 427
(1x) (2013) 345{364.



396 M. CHAKIR, B. KHOUKHI, M. TADJINE AND MS. BOUCHERIT

[8] Tijing, L.D., Woo, Y.C., Choi, J.S., Lee, S., Kim, S.H. and Shon, H.K. Fouling and its
control in membrane distillation { A review. Journal of Membrane Science 475 (2015)
215{244.

[9] Lawson, K.W. and Lloyd, D.R. Membrane distillation. Journal of Membrane Science 124
(1) (1997) 1{25.

[10] Felder, R.M. and Rousseau, R.W. Elementary Principles of Chemical Processes 3rd ed.
John Wiley & Sons, New York, 2000.

[11] Scho�eld, R.W., Fane, A.G. and Fell, C.G.D. Gas and vapor transport through microporous
membrane. Journal of Membrane science 53 (1-2) (1990) 159{171.

[12] Iversen, S.B., Bhatia,V.K., Dam-Jphasen, K. and Jonsson, G. Characterization of microp-
orous membranes for use in membrane contactors. Journal of Membrane science 130 (1-2)
(1997) 205{217.

[13] Eleiwi, F., Laleg-Kirati, T.M. Dynamic modeling and optimization in membrane distilla-
tion system. In: Preprints of the 19th World Congress, The International Federation of
Automatic Control. Cape Town, South Africa, 2014, 24{29.

[14] Gryta, M. In
uence of polypropylene membrane surface porosity on the performance of
membrane distillation process. Journal of Membrane science 287 (1) (2007) 67{78.

[15] He, F., Gilron, J., Lee, H. Song, L. and Sirkar, K.K. Potential for scaling by sparingly
soluble salts in cross 
ow DCMD. Journal of Membrane science 311 (1-2) (2008) 68{80.

[16] Hsu, S.T., Cheng, K.T. and Chiou, J.S. Sea water desalination by direct contact membrane
distillation. Desalination 143 (3) (2002) 279{287.

[17] Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.-S. and Yang, F. Recent advances
in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Re-
search 43 (6) (2009) 1489{1512.

[18] Gryta, M. Fouling in direct contact membrane distillation process. Journal of Membrane
Science 325 (1) (2008) 383{394.

[19] Knyazkova, T.V. and Maynarovich, A.A. Recognition of membrane fouling: testing of
theoretical approaches with data on NF of salt solutions containing a low molecular weight
surfactant as a foulant. Desalination 126 (1-3) (1999) 163{169.

[20] Hoek, E.M.V., Allred, J., Knoell, T. and Jeong, B.-H. Modeling the e�ects of fouling on
full-scale reverse osmosis processes. Journal of Membrane science 314 (1-2) (2008) 33{49.

[21] El-Bourawi, M.S., Ding, Z., Ma, R. and Khayet, M. A frame work for better understanding
membrane distillation separation process. Journal of Membrane Science 285 (1-2) (2006)
4{29.

[22] Khayet, M., Velzquez A. and Mengual, J.I. Direct contact membrane distillation of humic
acid solutions. Journal of Membrane Science 240 (1-2) (2004) 123{128.

[23] Srisurichan, S., Jiraratananon, R. and Fane, A.G. Humic acid fouling in the membrane
distillation process. Desalination 174 (1) (2005) 63{72.

[24] Gryta, M., Tomaszewska, M., Grzechulska, J. and Morawski, A.W. Membrane distillation
of NaCl solution containing natural organic matter. Journal of Membrane Science 181 (2)
(2001) 279{287.

[25] Naidu, G., Jeong, S., Kimb, S.J., Kim, I.S. and Vigneswaran, S. Organic fouling behavior
in direct contact membrane distillation. Desalination 347 (2014) 230{239.

[26] Mart��nez-D��ez, L. and Vzquez-Gonzlez, M.I. Temperature and concentration polarization
in membrane distillation of aqueous salt solutions. Journal of Membrane Science 156 (2)
(1999) 265{273.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 372{397 397

[27] Chekireb,H. Tadjine, M. and Djema��, M. On a Class of Manifolds for Sliding Mode Control
and Observation of Induction Motor. Nonlinear Dynamics and Systems Theory 8 (1) (2008)
21{34.

[28] Chekireb,H. Tadjine, M. and Djema��, M. Lyapunov Based on Cascaded Non-linear Control
of Induction Machine. Nonlinear Dynamics and Systems Theory 7 (3) (2007) 253{266.

[29] Boulkroune, A., Tadjine, M., M’Saad, M. and Farza,M. How to design a fuzzy adaptive
controller based on observers for uncertain a�ne nonlinear systems. Fuzzy Sets Syst 159
(8) (2008) 926{948.

[30] Boulkroune, A., Tadjine, M., M’Saad, M. and Farza,M. Adaptive fuzzy observer for uncer-
tain nonlinear systems. Control Intell. Syst 39 (3) (2011) 145{150.

[31] Boulkroune, A., Tadjine, M., M’Saad, M. and Farza,M. Design of a uni�ed adaptive fuzzy
observer for uncertain nonlinear systems. Information Sciences 265 (2014) 139{153.

[32] Gupta, M. K. Tomar, N. K. and Bhaumik, S. Observer Design for Descriptor Systems
with Lipschitz Nonlinearities: an LMI Approach. Nonlinear Dynamics and Systems Theory
14 (3) (2014) 292{302.



Nonlinear Dynamics and Systems Theory, 16 (4) (2016) 398{419

Searching Functional Exponents for Generalized
Fourier Series and Construction of Oscillatory

Functions Spaces

C. Corduneanu �

The University of Texas at Arlington and The Romanian Academy,
125, Calea Victoriei, sector 1, RO - 010071, Bucharest, Romania

Received: April 4, 2016; Revised: October 22, 2016

Abstract: This paper is intended to provide a framework for further developments
of the theory of generalized Fourier series of the form

1X

k=1

ak exp[i�k(t)]; t 2 R; (1)

where ak 2 C; k � 1; �k : R ! R; k � 1: Series of the form (1) will be called, in
this paper, series representing oscillatory functions, by the last term understanding
the sum of any series of the form (1), when convergent in some sense, classical or
generalized, such as summability procedure or, in respect to a certain norm on the
space of series, or in the associated function space of sums or generalized sums. A
basic idea we follow is to start from linear spaces of series like (1), then to organize
them by introducing a norm or a kind of convergence. The connection between a space
of generalized trigonometric series of the form (1) and the space of functions resulting
from introducing a topology/norm is our main objective. It is also emphasized that
the preceding stages of Fourier analysis, i.e., the classical trigonometric series (the
�rst stage) or the almost periodic functions (the second stage) are also parts of the
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1 Introduction

Series of the form (1) and construction of spaces of oscillatory functions, consisting of the
sum or generalized ‘sum’, have been investigated by researches during the last 20-25 years.
We shall further provide the references, adequate to the subject. It has to be emphasized
that both engineering and mathematical literature contain results related to this topic,
generated by the applied problems. Mathematicians have started a theory related to
the series of the form (1) and their attached oscillatory function spaces. The method
used consists in completing certain spaces of generalized trigonometric polynomials, with
respect to uniform convergence as basic tool, or the convergence in the mean (of order 2).

Since we take the series as primary element in the construction of function spaces of
oscillatory functions, we need to proceed with the investigation of spaces whose elements
are series of the form (1), to organize them algebraically and then topologically to obtain
the series spaces. After the construction of series spaces, we shall be able to obtain the
function spaces, consisting of oscillatory functions.

First, let us brie
y present the examples already existing in the literature, due to
Osipov [15] and Zhang [17]{ [20]. These mathematical constructions have been preceded
by contributions coming from the engineering literature, due to several researchers, and
mentioned in the references to Zhang’s papers quoted above. Such applied sources have
appeared, particularly, in the IEEE publications, during the last two decades, sporadi-
cally, in other journals.

It is interesting to mention the fact that the �rst stage of development of Fourier anal-
ysis (in its main goal of establishing the connection between series and functions), besides
many other aspects, started in the 18-th century with names like Euler and continued
its vigorous development in the 19-th century, when a great number of mathematicians
brought very important contributions, starting with Fourier.

An example connected to the advancement of the �rst stage is the proof of a conjecture
due to Luzin (from 1915), about the convergence almost everywhere, of the Fourier series
of any functions f : [0; 2�] ! R; f 2 L2([0; 2�]; R): In such case,

f ’
a0

2
+

1X

j=1

(aj sin jt + bj cos jt);

where aj ; bj are given by the classical Euler formulae. The sign ’ above can be substi-
tuted by the sign =, excepting a subset of [0; 2�] of Lebesgue measure zero. This result
is due to Carleson (1966).

The books by Bary [1] and Zygmund [22] are almost of encyclopedic type for the
Fourier Analysis, the �rst stage, since its inception until the mid of the 20-th century.
Needless to say that the �rst stage is not yet quitting the scene and new contributions
are abundant.

In the 1920’s, the second stage is appearing with Bohr, followed by Stepanov, Bochner
and Besicovitch, to mention only a few of the great contributors to the theory of almost
periodicity, a kind of oscillatory motion, more complex than periodicity.

The current mathematical literature, dedicated to the case of almost periodic func-
tions is quite rich, the following quotations providing a rather complete source for this
subject: Bohr [3], Besicovitch [2], Favard [11], Levitan [13], Fink [12], Levitan [13] and
Zhikov [14], Corduneanu [4, 5].

The development of Science and Technology, especially in the 20-th century, lead to
the new form, a generalized one, for Fourier series (trigonometric, when not generated by
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a function). This new type of series is of the form presented in formula (1) above, with
the functional exponents �k(t) : R ! R, k � 1, subject to conditions further speci�ed.
In Zhang’s papers quoted above, several spaces of oscillatory functions are constructed,
starting with a class of generalized Fourier exponents, of the form

�(t) =
mX

k=1

ck exp[iqk(t)]; t 2 R; ck 2 C; (2)

where qk(t) are de�ned by formulae like

q(t) =

8
>>><

>>>:

mP

i=1
�jt�j ; t � 0;

�
mP

j=1
�j(�t)�j ; t < 0;

(3)

with �j 2 R; j = 1; 2; :::; m and �1 > �2 > � � � > �m > 0: The class of generalized
exponents in (2), (3), is denoted by Q(R; R) and, according to Zhang [21], it has been
considered by Gelfand in another context.

The �rst space of oscillatory function, de�ned by Zhang [19], has been called the space
of strong limit power functions and denoted by SLP (R; R), is obtained by completing
the linear space of all generalized trigonometric polynomials of the form

P (t) =
nX

k=1

ck exp[iqk(t)]; t 2 R; (4)

with qk(t) as in (3) and ck 2 C, k = 1; 2; :::; n = n(P ); the norm being the supremum, on
R, of the polynomial P (t) in (4). Of course, the topology induced by this norm is that
of uniform convergence on R. Consequently, the construction of the space SLP (R; C)
is achieved by the method of completion of linear vector spaces, in this case, the norm
being the sup

R
j � j.

Therefore, the space SLP (R; C) is a Banach space over C, which is also a subspace
of the richer Banach space BC(R; C), of continuous and bounded maps from R into C,
with the uniform convergence on R.

Taking the space SLP (R; C) as a base space, new oscillatory function spaces have
been constructed by Zhang [20], namely the Besicovitch type spaces, similar to the spaces
B1(R; C); or B2(R; C). For the �rst case, one has to complete SLP (R; C) with respect to
the norm f ! M(jf j), while in the second case, of the space B2(R; C), the norm chosen
for the completion procedure will be f ! fM(jf j2)g1=2:

The interested reader can �nd the details in Zhang’s papers, quoted above, or in the
book by Corduneanu et al. [10]. Many properties are known for classical almost periodic
functions, in which case the functional exponents are linear functions, of the form �t;
t 2 R; � 2 R.

In summarizing the discussion above, about the oscillatory function spaces con-
structed by Zhang, one can notice the following steps which are necessary in the proce-
dure: �rst, one needs a set (possibly with an algebraic structure) of generalized functional
exponents, say ff(t)g, such that exp[if(t)] has the following property:

lim
‘!1

(2‘)�1
Z ‘

�‘
f(t) exp[if(t)]dt



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 398{419 401

exists (as a �nite complex number); second, for the completion property of the space
of oscillatory functions, one needs to choose a topology, or a norm, based on which we
obtain the completed (or Banach) space. In the case we use a seminorm, instead of a
norm, the need to work with a factor space is required. See, for instance, Corduneanu [5].

To brie
y summarize the connection between the series and its sum, let us denote
this connection by

f(t) ’
1X

k=1

ck exp[iqk(t)] (5)

and provide the formulae (k � 1)

ck = lim
‘!1

(2‘)�1
Z ‘

�‘
f(t) exp[�iqk(t)]dt: (6)

As proved in Zhang’s quoted papers, the Parseval equation

1X

k=1

jckj2 = lim
‘!1

(2‘)�1
Z ‘

�‘
jf(t)j2dt (7)

also holds. It has many implications, among them we mention the uniqueness of the
generalized Fourier series attached to a function f 2 SLP (R; C). Or, the one to one
correspondence between the elements of the space SLP (R; C) and those of the space ‘2.

For more details on these matters, the reader is invited to consult the Appendix to the
book of Corduneanu et al. [10]. See also the paper by Zhang [19], for the construction of
the spaces of Besicovitch type, B1(R; C) and B2(R; C), by using the completion method,
as speci�ed above, by using the norms M(jf j) and fM(jf j2)1=2, with respect to which the
space SLP (R; C) is not complete. In the paper of Corduneanu [8], the space B2

�(R; C)
is constructed by this method, for an arbitrary set � = f��, � 2 an arbitrary set of
generalized Fourier exponentsg.

The remaining part of the Introduction will be concerned with the space constructed
by Osipov [15], also pertaining to the third stage in the development of Fourier Analysis.

The Osipov space is known under the name of Bohr-Fresnel almost periodic functions
space. Actually, these functions are oscillatory in the sense of adopted de�nition and a
result of Osipov states: Let f(t) : R ! C be a Bohr-Fresnel almost periodic function.
Then, there exists a Bohr almost periodic function F (t; x) : R � R ! C, such that
f(t) = F (t; t2), t 2 R. Of course, the result shows the close relationship between Bohr
and Bohr-Fresnel almost periodic functions, but the theory of the later is much more
complex, as it appears in the book of Osipov, quoted above.

Following our procedure in constructing new spaces of oscillatory functions, we shall
start from the set of all formal trigonometric series, of the form

1X

k=1

ck exp(i�t2 + 2i�kt); (8)

where ck 2 C, �; �k 2 R; k � 1. One usually assumes that �k’s are distinct.
It follows from Zhang’s case discussed above that each term in (8) has a �nite limit

(Poincar�e) on the whole real axis. Moreover, if the series in (8) is absolutely convergent
and denotes the sum by f(t), then the connections between f and series (8) are given by
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the formulae for coe�cients, in terms of f(t):

ck = lim
‘!1

(2‘)�1
Z ‘

�‘
f(t) exp(�i�t2 � 2i�kt)dt: (9)

Let us note that � is a real number which is determined by the function f(t). Also, the
formula (9) is valid in cases when the series (8) is not necessarily absolute (hence, also
uniform) convergent. The right hand side of (9) makes sense in more general situations,
as we shall see. It is, again, the Poincar�e mean value on R.

If one assumes the condition
1X

k=1

jckj2 < 1; (10)

which is less restrictive than the condition of absolute convergence, we obtain a larger
space of oscillatory functions, which is in a slighter modi�ed form { the space of Osipov
[15], consisting of oscillatory functions.

We shall list now some properties of the space of Bohr{Fresnel almost periodic func-
tions, presented in detail in Osipov’s book quoted above.

We point out the fact that the Parseval type equation

lim
‘!1

(2‘)�1
Z ‘

�‘
jf(t)j2dt =

1X

k=1

jckj2; (11)

where the ck’s are given by (9), holds true for every B2-almost periodic function.
Another property, following from (1) and some extra arguments, is the uniqueness of

the generalized Fourier series, associated to a function in the Bohr-Fresnel space.

As shown in Section 2 below, to each sequence fck; k � 1g satisfying (10), there
corresponds a unique Bohr-Fresnel function. The approximation property is also valid,
in the following format (di�erent than in Osipov’s text): Any function f(t), in the class of
Bohr-Fresnel almost periodic functions, can be approximated with any degree of accuracy
by polynomials in this class, with frequencies belonging to the set of frequencies in its
generalized Fourier series. Using the norm derived from the Poincar�e mean value

M(f) = lim
‘!1

(2‘)�1
Z ‘

�‘
f(t)dt; (12)

the approximation property can be stated: for each " > 0, there exists n 2 N , such that

M

(

jf(t)j �
nX

k=1

ck exp(i�t2 + 2i�kt)j2
)

< "2; (13)

with ck; k = 1; 2; :::; n, given by (9). We notice that, unlike in the case of Zhang’s space
SLP (R; C), the ’measure’ of length used is based on the Poincar�e mean value, inducing
a convergence in the mean (of order 2), instead of the uniform convergence, achieved by
the sup-norm.

We shall conclude this introductory remarks related to the oscillatory function spaces
constructed by Osipov and Zhang, mentioning the fact that, in the paper [21] by Zhang et
al. the case of generalized Fourier exponents having the form of a quadratic polynomial,
with real valued coe�cients, has been thoroughly investigated, all possible cases (for
constructing a space of oscillatory functions) being emphasized.
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2 Finding Generalized Functional Fourier Exponents

From the form of formula (1), we realize that in order to attach a function to the series
which we would like to represent an oscillatory function, with some basic properties
encountered for classical Fourier series or the ones characterizing various types of almost
periodic functions, two necessary conditions have to be satis�ed:

First, we must �nd the generalized Fourier exponents, denoted by �k(t), k � 1;
more precisely, we need to identify sets we shall represent by �, containing sequences of
functions R ! C, at least locally integrable on R. Since each sequence of �k(t)’s must
contain distinct terms, it is obvious that � has to be at least countable. Moreover, in
case we want to represent certain functions R ! C by such series, which means we have
to determine the coe�cients of the series like (1), we realize that, each sequence involved,
must be formed from mutually ’orthogonal’ elements. This condition will be imposed in
the form suggested by Poincar�e mean value, namely

lim
‘!1

(2‘)�1
Z ‘

�‘
exp[i(�j(t) � �k(t))]dt =

(
0; j 6= k;

1; j = k:
(14)

This condition is also suggested by the theory of Hilbert (rather pre-Hilbert) spaces,
but we are not getting into details here.

Second, one needs to make precise the kind of attaching to a given series of the type
(1), a function that could be reasonably called a generalized sum. Of course, the most
natural way is to have a condition assuring the convergence of the series with respect to
a certain norm. Since this is a rather restrictive condition (if, for instance, we keep in
mind the fact that the classical Fourier series of a continuous function is only summable
to the generating function, using Euler’s formulae for coe�cients), we may use, when
adequately, instead of a norm, a seminorm. This feature will lead to further problems
when constructing the spaces of oscillatory functions, but it serves well our purpose, as
we see below, in this paper.

We can obtain sequences f�k(t); k � 1g, such that (14) is satis�ed, if we can construct
distinct solutions of the equation/relation

lim
‘!1

(2‘)�1
Z ‘

�‘
exp[i�(t)]dt =

(
0; �(t) 6� 0;

1; �(t) � 0:
(15)

Indeed, if �k(t); k � 1; are distinct solutions of (15), then the sequence f�k(t); k � 1g
satis�es obviously the relationship (14).

Let us determine solutions of the equation/relation (15), choosing a simple procedure
based on Cauchy’s integral theorem.

Namely, limiting our considerations to those �(t) : R ! R, which constitute restric-
tions of entire functions � = �(z), z 2 C and applying Cauchy’s theorem for a closed
contour, consisting of the interval of the real axis (�‘; ‘) and the semicircle C‘ having
(�‘; ‘) as diameter, situated in the half-plane Im z � 0, one obtains for ‘ > 0

Z ‘

�‘
exp[i�(t)]dt +

Z

C‘

exp[i�(z)]dz = 0; (16)
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on C‘ being from ‘ to �‘. Let �(z) be a primitive of ei�(z), which is also an entire
function. Then (16) yields for ‘ > 0,

Z ‘

�‘
exp[i�(t)]dt = �(�‘) � �(‘): (17)

From (15) one derives now the condition for �:

‘�1[�(‘) � �(�‘)] = o(1); ‘ ! 1: (18)

Consequently, the equation/relation (18) provides a source for obtaining �(z), such that
�0(z) = exp(i�(z)) and, taking a sequence of distinct solutions of (18), we have the
possibility of constructing series of the form (1).

Let us notice that the second case in (15) is obviously veri�ed, i.e., when �(z) � 0.
If one chooses �(z) = �z; � 2 R, � 6= 0, z 2 C, then we derive from above

lim(i�‘)�1[ei�‘ � e�i�‘] = 0; as ‘ ! 1: (19)

Since the bracket is bounded as ‘ ! 1, there results the validity of (18).
Hence, the series resulting from the above considerations, namely

1X

k=1

ak exp(i�kt); t 2 R; (20)

with �k being arbitrary real numbers, are series for oscillatory functions.
But we recognize in (20) the Fourier series corresponding with the almost periodic

functions. Depending on the nature of their convergence of summability, we obtain
the classical Bohr almost periodic functions and its multiple generalizations (Stepanov,
Besicovitch, the APr-almost periodic functions).

Remark 2.1 From the formula (17), we can draw the following conclusion. If �(z)
is a function satisfying the condition �(‘) = �(�‘), i.e., is an even function, then (17) is
veri�ed. This is a rather special case and we invite the readers to �nd other solutions to
the equation/relation (18), in the class of entire functions.

We shall deal now, with another condition imposed, to the function �(t), namely

�(�t) = ��(t); t 2 R: (21)

Finding generalized Fourier exponents, in the class of odd functions on R, leads to another
relation/equation similar to (18). This restriction was also imposed by Zhang, when
constructing the space SLP (R; C).

Let us notice that the left hand side in (17) can be rewritten as
Z ‘

�‘
exp[i�(t)]dt =

Z 0

�‘
exp[i�(t)]dt +

Z ‘

0
exp[i�(t)]dt

= 2
Z ‘

0
cos �(t)dt; ‘ > 0;

(22)
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if we take into account (21) and change t for �t in the �rst integral. Therefore, in
order to satisfy the �rst condition of (15) it is necessary and su�cient to satisfy the
equation/relation Z ‘

0
cos �(t)dt = o(‘); as ‘ ! 1: (23)

Only odd solutions �(t) at least locally integrable are candidates for functional exponents
in series representing oscillatory functions.

In what follows, we shall deal with �nding nontrivial solutions to the equation/relation
(23), as well as (18).

The relation/equation (23) has, indeed, nontrivial solutions. We notice that any
function of the form �(t) = �t, with � = const. 2 R and t 2 R, is an odd function
which satis�es both (18) { as seen above, and (23). Hence, we reobtain the functional
exponents that characterize various classes of almost periodic functions. This remark
is a con�rmation of the fact that the oscillatory functions contain the classical cases of
periodic and almost periodic functions. More comments on these matters will be made
in forthcoming text.

Of course, it is interesting to emphasize classes of generalized exponents, using the
equation/relation (23). And let us examine the case of oscillatory functions of Osipov [15]
type.

Still remaining in the classical �eld, let us remind the Fresnel integrals, related to his
theory in Optics: for � > 0, one has

Z 1

0
cos(�t2)dt = (2�)�1

r
�
2

� (24)

Taking (24) into account, we �nd out that the relation/equation (23) is veri�ed by any
function �t2; � > 0; t � 0: In order to obtain the odd function satisfying (21), one has
to consider (on R) �(t) = �t2 for t � 0 and �(t) = ��t2 for t < 0. Then we rely on
Zhang’s et al. results in [21] to �nd that �(t) de�ned above can be used to construct
generalized trigonometric polynomials, based on quadratic algebraic polynomials. This
means, generalized trigonometric polynomials of the form

P (t) =
mX

k=1

ak exp[i(�t2 + �kt)]; (25)

with �; �k 2 R; 1 � k � m: There is no free term at the exponent, because it is absorbed
by ak. This approach, used by Zhang and his collaborators, does not lead to the original
space constructed by Osipov. The method used by Osipov [15] requires that polynomials
of the form (25), with �(t) = �t2 + �kt; t 2 R, be used to construct the functions "sum"
on the whole R. More precisely, (24) can be used only on R+, or on the whole R. In such
a way, we actually obtain two spaces of oscillatory functions, based on second degree
algebraic polynomials as functional exponents. In the introduction, we have sketched the
construction of the original Osipov space. The details are given in Osipov’s book [15],
besides a short presentation of Bohr’s theory, to serve for the parallelism between two
concepts of almost periodicity (actually, Bohr-Fresnel functions constitute an example of
oscillatory functions, even though they can be represented by the classical Bohr almost
periodic functions). Their Fourier series is representative for the third stage of Fourier
Analysis.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 398{419 406

Concerning Zhang’s SLP (R; C) functions, one sees from their construction that they
are odd functions. The fact of possessing a �nite Poincar�e mean value is proven in the
paper by Zhang [19].

Let us now consider an example corresponding to �(z) = sin �z; a 2 R, z 2 C.
Obviously, �(z) is an odd function. But this �(z) is not a solution of (23). The associated
generalized Fourier series is

1X

k=1

ak exp[i sin �kt]; t 2 R; (26)

which is characteristic for the third stage of Fourier Analysis. If we admit the condition
fak; k � 1g 2 ‘1(N; C), then (26) is absolutely and uniformly convergent on R. Since
every term is a Bohr almost periodic function, the series is convergent to a function
f 2 AP (R; C). In other words, this case is an example of a series whose construction
is not based on the use of equation (18) or (23), but the sum is an oscillatory function,
even of classical type.

Of course, if instead of the condition imposed above, fak; k � 1g � ‘1(N; C), one
chooses another similar one, the result may lead to other classical spaces of almost
periodic or oscillatory functions. It is also clear that the same oscillatory function can
be represented by di�erent types of generalized Fourier series. An in depth study of this
fact would be welcome.

One can �nd many other sequences of generalized Fourier exponents, just relying on
above considerations. An example, also resulting from Zhang’s constructions, is given by
a sequence of odd degree polynomials, say like �(z) = a1z + a3z3 + � � � + a2k+1

2k+1: Indeed,
these polynomials and their linear combinations are satisfying the request appearing in
Zhang’s construction of generalized Fourier series [19]. These exponents satisfy, starting
with k = 1, requirements coming from applications.

We shall prove now a lemma, showing how one can get more complex generalized
exponents, relying on some already found.

Lemma 2.1 Let us assume we are given a set of generalized exponents, say � =
f��(t) : � 2 Ag, where A is a set of indices, at least countable. If ’ : R ! R is a locally
integrable map, such that lim exp]i’(t)] exists when t ! 1, while f�j(t); j � 1g 2 � and
form an orthogonal system as shown in (14), then the sequence f’(t)+�j(t); j � 1g � �
is also orthogonal in the sense shown by (14).

The proof is immediate if we notice that [’(t)+�j(t)]� [’(t)+�k(t)] = �j(t)��k(t);
and take (14) into account.

In this way, we have obtained in case of Osipov’s kind of generalized Fourier series,
i.e., the Bohr-Fresnel case of almost periodic functions: �t2 + �kt, k � 1, representing
the exponents of terms in the series for Osipov’s oscillatory functions.

We invite the reader to investigate solutions of the form �(t) = t�, � 2 R+, for the
equation (23). Also, for the relation/equation (18). In particular, the odd polynomials
mentioned above, justi�ed by Zhang’s argument.

In concluding this section, we shall make two brief remarks/suggestions, which may
be helpful in the search of new classes of generalized Fourier exponents.

First one is related to the use of the general formula for residues, instead of Cauchy’s
integral theorem. This formula has the form, with notations similar to those in (16),

Z ‘

�‘
ei�(t)dt +

Z

c‘

ei�(z)dz = 2�i
X

res(ei�(z)); (27)
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the � being extended at the poles of exp[i�(z)], within the interior of the semidisc
formed by c‘ and (�‘; ‘). The function exp(i�(z)) must be meromorphic, with zeros at
(z1; z2; :::; zn) 2 Cn; so that, for large enough ‘, one can take the limit of both sides in
(21), as ‘ ! 1. Apparently, this is not an easy task, but in the a�rmative case it will
provide other solutions for determining generalized Fourier exponents.

Second remark relates to the notation � for the set of generalized exponents. It is
obvious that, from algebraic point of view, this set of real valued functions must form
at least an additive group. This can be seen, for instance, from the formulas providing
the coe�cients of a generalized Fourier series, such as (6), (9), or the orthogonality
conditions.

Zhang [19] required more algebraic conditions, for instance the ring structure for �,
a necessity imposed by the fact that the product of two function in �, must be in �.

3 Construction of a Space of Oscillatory Functions

In Section 1, we have summarily presented the construction of the oscillatory function
spaces, following the two authors who have brought signi�cant contributions to the de-
velopment of the third stage of Fourier Analysis. We shall present, in this section, the
construction of a space of oscillatory functions, denoted by ’AP1(R; C; �), the AP just
reminding us of the case of almost periodic functions, which functions are also oscillatory
type (see the de�nition in the Abstract of the paper). It is the corresponding, more
general, case of the space AP1(R; C), see Corduneanu [6, 7], the name of Poincar�e being
properly attached, since he has provided the �rst example of an almost periodic function
(Bohr), in a rather important case: when the Fourier series attached is absolutely and
uniformly convergent on R.

The �rst step in the construction consists in specifying the set/class of generalized
Fourier/trigonometric series, of the form (1), which will be the elements of AP1(R; C; �).
Namely, to obtain the space AP1(R; C; �), we shall assume that all series of the form (1),
for which

1X

k=1

jakj < 1; (28)

will be the elements of AP1(R; C; �), and only them.
Since the series satisfying (28) imply the absolute convergence, due to the fact

jak exp[i�k(t)]j � jakj; k � 1, t 2 R, �k 2 �, the norm on this space appears natu-
rally to be the one given in (28), i.e.,

�����

1X

k=1

ak exp[i�k(t)]

�����
AP1

=
1X

k=1

jakj: (29)

Hence, the set AP1(R; C; �) is a linear normed space on C. Moreover, this space is a
Banach space, i.e., complete as a linear metric space, a statement which is implied by
the completeness of the space ‘1(R; C).

We shall try now to derive some properties of this space, particularly looking at its
connections with function spaces on R. The natural approach seems to be in attaching
to the series (1), the function representing its sum. This means the correspondence/map
is given by

1X

k=1

ak exp[i�k(t)] !
1X

k=1

ak exp[i�k(t)]; t 2 R; (30)
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with the left hand side in (39) regarded as the formal series, while the right hand side is
the sum of the series, i.e., a function f : R ! C:

It is obvious that f = f(t), t 2 R, is a complex valued function, de�ned on R
and taking values which are uniformly bounded, by the right side in (29). It is also a
continuous and bounded map from R into C, which tells us that AP1(R; C; �) � BC(R; C)
= the space of bounded and continuous maps from R into C. We have admitted that �
consists of continuous functions. When this condition does not hold for the elements of
AP1(R; C; �), we can obtain spaces of measurable functions (for instance), more general
than BC(R; C).

Let us summarize now the discussion above regarding the space AP1(R; C; �) and its
Banach space structure, over the �eld C. We need to keep in mind that AP1(R; C; �)
can be regarded either as a series space or a function space. Their isomorphism is the
motivation for using the same notation for both of them. We shall write now the formula
which represents the space AP1(R; C; �):

AP1(R; C; �) =

(

f : R ! C; f(t) =
1X

k=1

ak exp[i�k(t)];

1X

k=1

jakj < 1; �k(t) 2 �; k � 1

)

:
(31)

The norm is given by formula (29). The completion of the space AP1(R; C; �) follows
easily from the following argument. Indeed, from our assumption (25), there follows that
AP1(R; C; �) is the closure of the subset of generalized trigonometric polynomials of the

form
nP

k=1
ak exp[i�k(t)], with ak and �k(t), k � 1, as considered above.

Since the completion of a linear normed space is the minimal complete Banach space,
containing the given linear normed space, while any element of AP1(R; C; �) can be
regarded as the limit in the sense of the norm, we obtain a contradiction if we assume
that there exists a complete linear space, larger than AP1(R; C; �), i.e., containing at
least one element outside AP1(R; C; �), which can be reached by the limit process with
terms from the space of trigonometric polynomials of the above shown form (sections of
the series in the space AP1(R; C; �)).

Theorem 3.1 The space of oscillatory functions AP1(R; C; �) is constructed in the
following steps:

1) One chooses a set �, at least countable, consisting of continuous functions R ! R,
such that any sequence f�k(t); k � 1g � � is orthogonal in the sense of Poincar�e’s
mean value on R, as shown in formula (14).

2) See Section 2 for details in obtaining such a set �.

3) One considers the set of all generalized Fourier series of the form (1), with
f�k(t); k � 1g � �, which can be routinely organized as a linear space over C.

4) In order to introduce a topology/convergence on this linear space, we have denoted
it by AP1(R; C; �), we consider on it the norm de�ned by (29).

5) One derives, as shown above, that the space AP1(R; C; �) is a Banach space, by
proving its completeness in the norm (29).
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Remark 3.1 The isomorphism of the series space AP1(R; C; �) and the function
spaces of the sums of its series, in other words, the one to one correspondence between
the series and functions-sums, will follow easily when we are able to prove the uniqueness
theorem for Fourier generalized series in AP1(R; C; �), based on Parseval’s formula

1X

k=1

jakj2 = lim
‘!1

(2‘)�1
Z ‘

�‘
jf(t)j2dt; (32)

to be established in the sequel. There is an alternative approach, based on the formula
for the coe�cients, in terms of the sum of the series

ak = lim
‘!1

(2‘)�1
Z ‘

�‘
f(t) exp[�i�k(t)]dt: (33)

Both approaches will be substantiated in the presentation to follow.

Remark 3.2 Since we shall deal with product of elements/series of AP1(R; C), we
notice that this operation (Cauchy’s rule of multiplication can be performed only in case
when � is an additive group of real valued functions � = �(t) : R ! R, which we shall
use to form the generalized Fourier series.

Now, let us prove the formula (32), which establishes the connection between the
function f(t) : R ! C, and its generalized Fourier series in (30). One obtains, by
multiplying both sides by exp[�i�j(t)] 6= 0, the following relation:

f(t) exp[i�j(t)] =
1X

k=1

ak exp[i(�k(t) � �j(t)]; (34)

which we can integrate from �‘ to ‘, both sides, the second, term by term. This follows
from the condition fak; k � 1g � ‘1(N; C), taking also into account the fact that each
exponential has module equal to 1. This leads to the equation

Z ‘

�‘
f(t) exp[�i�j(t)]dt =

Z ‘

�‘

1X

k=1

ak exp[i(�k(t) � �j(t))]dt

=
Z ‘

�‘

nX

k=1

ak exp[i(�k(t) � �j(t)]dt

+
Z ‘

�‘

1X

k=n+1

ak exp[i(�k(t) � �j(t)]dt;

(35)

assuming n > j. Both sides of this equation must be multiplied by (2‘)�1 and then take
the limit as ‘ ! 1. Taking into account the equations (14), one obtains from above,
since �����

(2‘)�1
Z ‘

�‘

1X

k=n+1

ak exp[i�k(t) � �j(t)]dt

�����
�

1X

k=n+1

jakj < ";

provided n > N(") � N; and what remains from (33) when ‘ ! 1 is:

lim
‘!1

(2‘)�1
Z ‘

�‘
f(t)[�i�j(t)]dt = ak;
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i.e., the formula (32) for the coe�cients of the function f(t) = the sum of the associated
Fourier series, with generalized exponents from �.

We can now proceed to prove the validity of the Parseval formula (32), for any
f 2 AP1(R; C; �). Indeed, we have

Z ‘

�‘
jf(t)j2dt =

Z ‘

�‘
f(t) �f(t)dt =

Z ‘

�‘
� �dt; (36)

with � from (29)-(31); but, for large n, we can also write

f(t) �f(t) =
nX

k=1

jakj2 +
nX

k;j=1
k 6=j

ak�ajei[�k(t)���j(t)]

+

"
1X

k=n+1

akei�kt

#

�rn(t) +

"
1X

k=n+1

�ake�i�k(t)

#

rn(t) + jrn(t)j2;

(37)

with

rn(t) =
1X

k=n+1

akei�kt:

Let us integrate both sides of the last equation (37) above, from �‘ to ‘, and multiply
both sides by (2‘)�1. If one takes into account the relationships (14), n is su�ciently
large, such that jrn(t)j < " < 1 for n � N("), then, integrating leads to the inequality
(38) below, as ‘ ! 1:

lim
‘!1

(2‘)�1
Z ‘

�‘
jf(t)j2dt �

nX

k=1

jakj2 � (2M + 1)"; (38)

where M =
1P

k=1
jakj < 1; because each of the last two terms in (37) is dominated in

modulus by M , while jrn(t)j2 < "2 < ". From (38) one obtains the Bessel inequality,
which easily leads to Parseval (32). See our book [5], for instance.

Therefore, we conclude that Parseval’s formula (32) is valid for any f 2 AP1(R; C; �).
We shall see, in the sequel, that its validity takes place in richer spaces of generalized
Fourier series, containing AP1(R; C; �).

To continue with the properties of the elements/functions of the space
AP1(R; C; �), we shall remark �rst that the boundedness on R, of each f 2 AP1(R; C; �),
with � consisting of continuous generalized exponents, is a direct consequence of the
norm de�nition in formula (31). Let us point out the fact that this property remains
valid in more general spaces than C, for example when C is substituted by a complex
Banach space.

Another important fact following from the Parseval formula (32) is the existence of
the Poincar�e mean value of the square of any f 2 AP1(R; C; �). This property will be
taken in constructing a richer space of oscillatory functions, denoted by AP2(R; C; �).

We notice the property of continuity of the functions in AP1(R; C; �), fact easily
derived if we admit the continuity of elements in � (the generalized Fourier exponents)
and we rely on the absolute and uniform convergence of the series constituting the space
AP1(R; C; �).
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Concerning the property of uniform continuity of functions in AP1(R; C; �), known
to be valid for the special case when � = f�t; �; t 2 Rg, we notice that we should look
closer at the set � of generalized exponents, the answer to the problem being certainly
determined by the properties of the elements of �.

Let us consider the formula from (31), namely

f(t) =
1X

k=1

ak exp[i�k(t)]; t 2 R; (31)0

and estimate the di�erence f(t + h) � f(t), h > 0: One �nds, based on the absolute
convergence of the series involved,

f(t + h) � f(t) =
1X

k=1

ak[exp i�k(t + h) � exp i�k(t)]; t 2 R; h > 0; (39)

with help from the classical formula

exp i� = cos � + i sin �; � 2 R; (40)

one easily derive the Lipschitz type inequality for t 2 R; h > 0; " � 1:

j exp i[�k(t + h)] � exp[i�k(t)]j � 2j�k(t + h) � �k(t)j:

Therefore, one obtains from (39)

jf(t + h) � f(t)j � 2
1X

k=1

jakj j�k(t + h) � �k(t)j; (41)

an inequality which can be discussed in regard to the properties of the set � of
generalized exponents.

The most direct answer seems to be the following:
The sequence f�k(t); k � 1g � � admits a continuity module on R, say !(h), with

h ! 0 implying !(h) ! 0: In other words, one obtains from (41), f(t + h) ! f(t) as
h ! 0, uniformly with respect to t 2 R. A more stringent condition would be to have
! as a continuity module for all �(t) 2 �. This answer, in the weak form, is suggested
by the case when � = f�t; � 2 R; t 2 Rg, i.e., the almost periodic case for the space
AP1(R; C) of Poincar�e. In this case, with �k(t) = �kt, �k 2 R�f0g, t 2 R, the continuity
module is !k(h) = j�kjh:

Another formulation related to the concept of module of continuity could be phrased
in terms of equicontinuity of functions in the set �, or some of its parts; for instance, the
sequence of exponents f�k(t); k � 1g is equicontinuous if, for each " > 0, there exists
� = �(") > 0; such that j�k(t) � �k(s)j < ", for any t; s 2 R, such that jt � sj < �.
In particular, any sequence f�k(t); k � 1g � �; which is uniformly convergent on R,
satis�es the conditions of equicontinuity. Also, a compact subset, countable or not, of �;
which is compact in respect to the uniform convergence (for instance, a compact subset
of the space BC(R; C):

Obviously, from the discussion above, we can infer that the problem of uniform con-
tinuity of functions in AP1(R; C; �) has more than one answer. We invite the reader to
consider other cases when the uniform continuity is assured.
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In the last part of this section, we will consider an example of a space in the same
category as the space AP1(R; C; �), which presents a particular 
avour and allows the
illustration of several kinds of convergence. Also, this example will display a sort of
classical type of space.

Namely, we shall assume that the set of generalized exponents is given by � =
AP (R; R), i.e., the space of real valued almost periodic functions in the sense of Bohr.

In this case, the series of the real parts of the terms in
1P

k=1
ak exp[i�k(t)], which has

the form �0 +
1P

k=1
[�k cos �k(t) + �k sin �k(t)]; appears to belong to the third stage of

generalized Fourier Analysis.
Let us notice that each term in the series above reminding us of the classical form

of Fourier series is in APr(R), which means that a third stage in Fourier Analysis can
produce spaces of oscillatory functions also belonging to the classical heritage. Of course,
the main problem in constructing spaces of oscillatory functions consists in obtaining new
spaces, not pertaining to the classical category. The kind of convergence we associate
with the linear space of formal series, like (1), may or may not lead to the space AP (R; C),
or to a subspace of the latter in the case � = AP (R; R).

With these considerations, we end the problems/properties related to the space
AP1(R; C; �), moving to another space of oscillatory functions, constructed in a simi-
lar manner as above and relying on the construction and the consequences for the space
AP1(R; C; �).

4 Construction of the Space AP2(R; C; �)

In constructing the space of oscillatory functions, denoted by AP2(R; C; �), we can asso-
ciate the names of Besicovitch and Zhang to this type of space. In case of classical spaces
of almost periodic functions, the space AP2(R; C) represents the Besicovitch space. In
case of oscillatory functions spaces, the �rst examples are those described in Section 1
(Introduction) of this paper, when � = Q(R; R). See formulae (3) and (4) for details.
This type of space, with a special choice of �, is due to Zhang, who was the �rst to
express the need of getting more comprehensive spaces of oscillatory functions, than the
spaces of almost periodic functions. This need is motivated by the applications of Fourier
Analysis, found in engineering literature and pertinent references are included in Zhang’s
papers. His pseudo almost periodic functions (1992, Ph.D. thesis), which have generated
a vast literature in the last 20 years constitute a convincing example that shows the ne-
cessity of constructing new spaces of oscillatory functions. Moreover, the pseudo almost
periodic functions appear as "perturbations" of the classical almost periodic functions,
while their theory has many points of contact with the old theory.

In order to construct the space of oscillatory functions AP2(R; C; �), we will introduce
in the linear (algebraic) space of generalized trigonometric series, with � as in the case
of the space AP1(R; C; �) already described, the norm

�����

1X

k=1

ak exp[i�k(t)]

�����
AP2

=

 
1X

k=1

jakj2
!1=2

; (42)

i.e., the norm of the classical space ‘2 =
�

ak; k � 1;
1P

k=1
jakj2 < 1

�
of Hilbert.
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In the space of sum functions, associated to the series space AP2(R; C; �), we shall
use the seminorm, compatible with (42), which looks

jf jAP2 =

"

lim
‘!1

(2‘)�1
Z ‘

�‘
jf(t)j2dt

#1=2

; (43)

which is derived from Poincar�e mean value on R and has been used by Besicovitch in
the space B2(R; C) of his almost periodic functions (a natural generalization of Bohr’s
theory).

The compatibility will result from the validity of Parseval’s formula (32), whose va-
lidity has been already established in AP1. In order to obtain Parseval’s formula in case
f 2 AP2(R; C; �), we can proceed in the same way as in case of the space AP1(R; C; �).

But we need, �rst, to look closely to the relationship/correspondence between series
in AP2 and sum-function attached. We shall show, �rst, that to each series in AP2 one
can attach a function belonging to the space L2

loc(R; C). Indeed, for such a series of

the form
1P

k=1
ak exp[i�k(t)]; with fak; k � 1g � ‘2 and �k : R ! R, we can write for

n; p 2 N ,

lim
‘!1

(2‘)�1
Z ‘

�‘

�����

n+pX

k=n+1

ak exp(i�k(t)]

�����

2

dt =
n+pX

k=n+1

jakj2; (44)

taking into account the orthogonality of the sequence of �k(t)’s and the relationship
juj2 = u�u: From (44) and our assumption, we have included in de�ning the AP2(R; C; �),

1X

k=1

jakj2 < 1; (45)

we conclude that the series of AP2(R; C; �) are convergent with respect to the seminorm
chosen for this space. Moreover, the convergence in AP2(R; C; �) is implying the
convergence in L2

loc(R; C). This property of Fourier series is proven in our paper [8], in
the special case � = f�t; � 2 R; t 2 Rg. It remains valid in the general case, when
�k(t); k � 1, are more general functions than in the case �k(t) = �kt, k � 1, � 2 R,
corresponding to the almost periodic functions of all known types.

We shall write, as usual in the theory of oscillatory functions, including the classical
types, in the traditional form

f(t) ’
1X

k=1

ak exp[i�k(t)]; t 2 R; (46)

the fact that the function f(t) is constructed by means of the series in the right hand
side of (46). The manner of determining the coe�cients ak, k � 1, in terms of f(t), will
be discussed in this section. The formulae providing the ak’s are

ak = lim
‘!1

(2‘)�1
Z ‘

�‘
f(t) exp[�i�k(t)]dt; (47)

i.e., formally, the same as (32), valid for f 2 AP1(R; C; �).
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In order to derive (47) for f 2 AP2(R; C; �), we shall mention the fact that the space
AP1(R; C; �) is everywhere dense in the space AP2(R; C; �). This property follows from
the fact that, taking into account the de�nitions of the norm/seminorm in the spaces
AP1 and AP2, the generalized trigonometric polynomials of the form

P (t) =
nX

k=1

ak exp[i�k(t)]; t 2 R; (48)

constitute everywhere dense sets in both spaces AP1 and AP2. Of course, the exponents
�k(t), 1 � k � n, are chosen from �; for either space.

Let us notice that (49) is elementary in case of f(t) being polynomial of the form
(48). We have proven its validity, above in this section, for any f 2 AP1(R; C; �). Since
AP1 � AP2, due to the inclusion ‘1 � ‘2, we can regard the whole operations as taking
place in the space AP2(R; C; �).

As observed above, for each f 2 AP2(R; C; �), there exists a sequence in AP1(R; C; �),
such that for each f 2 AP2(R; C; �) one has f (j) ! f in AP2(R; C; �), as j ! 1: But
the convergence of a sequence in either space AP1 or AP2, is uniform on coordinates.
That means that from

f (j) ! f in AP2(R; C; �); (49)

there follow the convergence relations

aj
k ! ak as j ! 1; k � 1, uniformly. (50)

There remains to prove that ak; k � 1, are indeed the coe�cients of f 2 AP2(R; C; �).

It is useful to remark the following: If one deals with a countable set of series like the
set of series for f (j); j � 1, there is no loss of generality if we assume that all series have
the same generalized Fourier exponents. This is achieved by adding terms, with zero
coe�cients, after having the set of all exponents, forming a sequence, hence a countable
set. This operation does not in
uence the conditions of convergence (31) and (45).

There remains to prove that the limits ak; k � 1, are given by the formulae (47), i.e.,

a(j)
k � ak = lim

‘!1
(2‘)�1

Z ‘

�‘
[f (j)(t) � f(t)] exp[�i�k(t)]dt; (51)

tends to zero as j ! 1; k � 1.
The following estimates are routine in a calculus course. Indeed, one has

�����
(2‘)�1

Z ‘

�‘
[f (j)(t) � f(t)] exp[�i�k(t)]dt

�����

� (2‘)�1
Z ‘

�‘
jf (j)(t) � f(t)jdt

� (2‘)�1

"Z ‘

�‘
jf (j)(t) � f(t)j2dt

#1=2

(2‘)1=2

=

"

(2‘)�1
Z ‘

�‘
jf (j)(t) � f(t)j2dt

#1=2

:

(52)
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The last term in (52) is as ‘ ! 1, exactly the norm of f (j)(t) � f(t) 2 AP2(R; C; �),
which implies it tends to zero as j ! 1, by the choice of the approximating sequence
ff (j)(t); j � 1g � AP2(R; C; �). Taking into account (51) and (52), one obtains what is
required to derive that (49) is correct, it representing the connection between the Fourier
series and its generalized sum, in AP2(R; C; �).

Based on facts easily obtained in case of the space AP1(R; C; �), which is dense in
the space AP2(R; C; �), we can extend results from AP1(R; C; �) to the richer space
AP2(R; C; �), using the procedure above, when getting the formulae for the coe�cients
of the generalized Fourier series.

For instance, the Parseval equality (32), valid for f 2 AP1(R; C), can be extended as
proceeded above for f 2 AP2(R; C; �). It will look exactly as (32), which in the geometry
of the Hilbert space ‘2 = ‘2(N; C) means that the "length" of the limit of a convergent
sequence is the limit of the sequence of lengths of the terms in the sequence. We leave to
the reader the task of carrying out the details of the proof of (32), for f 2 AP2(R; C; �).
Of course, � has to be the same set of generalized Fourier exponents, in AP1 and AP2.

Another proof of the Parseval formula (32) can be obtained based on the model we
inherited from the classical period of almost periodicity. The details can be found in
the author’s book [5], as well as in many other sources. Instead of the exponents �kt,
for almost periodic functions, one can substitute the general exponents �k(t) 2 �, for
oscillatory functions.

Further properties of the space AP2(R; C; �) can be derived, taking into account its
structure of a Banach space, whose elements are generalized Fourier series of the form
(1).

We want to de�ne the identity of two series of the form
1P

k=1
ak exp[i�k(t)]; with the

usual signi�cance of the data involved: one must have �k(t) 2 � = the set of general-
ized exponents, the same in both formal series and with equal coe�cients for the same
exponent.

When a norm or a seminorm is de�ned, usually implying a kind of convergence,
we obtain a linear normed space which requires the completeness in order to become a
Banach space. Another type of condition can be imposed, to help organizing the space
of series (for instance, a kind of summability).

Once found a way of organizing the space of series like a linear metric space, the
next step is to move from the series space to a function space, the series playing the
role of a vehicle, or an intermediate stage, in the construction of the function space.
We have illustrated this in constructing the spaces AP1(R; C; �) and AP2(R; C; �). In
the literature, see particularly the quotation in the bibliography to this paper under
the names of Osipov and Zhang, cases which we have summarily presented in the
Introduction. Basically, one obtains such spaces of oscillatory functions by using the
procedure of completion with respect to various norms or seminorms of simpler spaces
(usually, classical ones).

5 More Spaces of Oscillatory Functions

It is clear from the preceding sections of this paper, including the Introduction, that once
we succeed to �nd a set � of generalized Fourier exponents, one can construct several
types of spaces of oscillatory functions. So far, we’ve got acquainted, to some extent,
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with the spaces built up by Osipov, Zhang and those in Sections 3 and 4, denoted by
AP1(R; C; �) and AP2(R; C; �). In case of spaces AP1(R; C; �) and AP2(R; C; �), the set
of generalized Fourier exponents � does not possess an algebraic structure, necessarily.
The operations of multiplication of elements will imply the necessity of having the set
� organized as an additive group of real-valued functions on R. The classical examples,
periodic and almost periodic, illustrate the need and the involved groups: in the periodic
case, the set � is given by � = f�t; � = k!; k 2 Z; ! > 0, constantg = any closed
subgroup of the topological group R; in the almost periodic case, � = f�t; �; t 2 Rg.
In the Introduction, in case of the examples due to Osipov and Zhang, the generalized
exponents for the Osipov type oscillatory functions have the form � = fat2 + bkt; a 2
R; bk 2 Rg, while in case of Zhang constructions, the generalized Fourier exponents
belong to the set Q(R; R); see formulae (3), (4), where the de�nition of the set Q(R; R)
is provided.

Section 2 is attempting to provide some tools in �nding generalized exponents for
series forming oscillatory spaces. The problem of �nding such exponents must be inves-
tigated further. Some suggestions must come from the applicative problems. One can
construct already many spaces of oscillatory functions, but their signi�cance is depending
of their area of applications.

In this closing section, we shall brie
y list and describe some other spaces of oscil-
latory functions, constructed in several ways, always starting with a set of formal series
characteristic for oscillatory functions and giving some comments on possible develop-
ments of the theory, formulating also some open problems. Of course, these ideas are
directed toward the theoretic, but also deeply practical aim, to have in the future a de-
veloped theory of the spaces of oscillatory functions. This development, if achieved, will
certainly constitute the third stage in the Fourier theory of vibrations and waves.

We shall start with the de�nition of the oscillatory function spaces we shall denote
by APr(R; C; �), 1 < r < 2, the cases r = 1; 2 being treated in the preceding section.
Taking the example from existing literature, namely Shubin [16] and Corduneanu [5],
the series spaces APr(R; C; �) will be formed from the generalized Fourier series like (1),

i.e.,
1P

k=1
ak exp[i�(t)], with ak 2 C and �k 2 C(R; R), �k 2 �, k � 1, with the following

property:
1X

k=1

jakjr < 1: (53)

We introduce the norm, in the linear space (over C), of the set of formal series of the
form (1), by the formula

�����

1X

k=1

ak exp[i�k(t)]

�����
AP1

=

 
1X

k=1

jakjr
!1=r

: (54)

These norms are known as Minkowski’s norms and the related inequalities are making
easier the proof of the norm properties in linear normed spaces. The completion of
the space of series satisfying (53) follows from the simple remark that the polynomials

associated to such series (sections like
nP

k=1
ak exp[i�k(t)]), form an everywhere dense set

in AP (R; C; �). Hence, the spaces APr(R; C; �) can be organized as Banach spaces.
These spaces, with 1 < r < 2, enjoy many properties that can be derived from the
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inclusions
AP1 � APr � APs � AP2; 1 < r < s < 2; (55)

which show that they are part of AP2, the space we have constructed above. In particular,
being also AP2-series, they have Fourier type series (generalized) of the form (1).

For a more detailed discussion of one space in the categories of APr-spaces, one
can consult the author’s paper [6]. Several applications are provided for several types
of functional di�erential equations, including integral equations, convolution and mixed
types of functional equations (integro-di�erential, convolutions, delay type).

Like in the special case when � = f�t; �; t 2 Rg, i.e., the almost periodic type of
functions, the series spaces APr(R; C; �), with the same �, they form a scale of oscillatory
functions when we regard their elements as parts of AP2(R; C; �), for which space we
have more accessible information (they are modeled on the Hilbert space ‘2(N; C)). The
stronger type of convergence we �nd in AP1(R; C; �), while the weaker one corresponds
to AP2(R; C; �).

We point out the fact that spaces of this scale have been seldom in attention of
researchers. Many problems, like convergence of their series in di�erent meanings (say,
pointwise to uniform or a.e.) still wait for detailed investigation. Also, the problem of
compactness for sets in such spaces is still unsolved, excepting in case of Zhang’s space
SLP (R; C; �), for � = Q(R; R). See Zhang [19] and the Appendix in Corduneanu’s et
al. book [10].

With regard to the space SLP (R; C; �), in more general cases than a speci�c � has
been considered, it is worth getting in some details of the construction. This type of
space is di�erent from those in the scale APr(R; C; �), 1 � r � 2, in the fact that,
instead of conditions on the coe�cients only, like (28), (45), from the beginning one
imposes the type of convergence. Namely, the space SLP (R; C; �) is the function space
whose elements/functions can be uniformly approximated on R by means of generalized
trigonometric polynomials of the form (4).

Since Zhang wanted to organize the space as an algebra, which idea brought some
advantages, the special type of � has been used. A question: are there other choices for
�, in order to achieve new spaces in the family of SLP (R; Q)?

Zhang [19] relied on this space (� = Q) to construct two new spaces of generalized
Fourier type (oscillatory functions spaces).

These new spaces generalize the Besicovitch type of almost periodicity. In very brief
format, the �rst of these spaces is obtained by completing the space SLP (R; C; Q) with
respect to the norm

f ! fM(jf j2)g1=2; (56)

while the second is the completion of SLP (R; C; �) with respect to the norm

f ! M(jf j); (57)

where M stands for the Poincar�e mean value on R. It turns out that the normed spaces
with either norm (56) or (57) are not complete, in general. For instance, the norm which
is given by (57), derives from

M(g) = lim
‘!1

(2‘)�1
Z ‘

�‘
g(t)dt;

and satis�es the inequality jM(g)j � jgj, where jgj represents the supremum norm (as
used by Zhang in constructing SLP (R; C; Q)). But, in the case of almost periodic
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functions space AP (R; C), the space itself generates the Besicovitch space B(R; C),
or B = B1, which is not complete. See an example in Corduneanu et al. [10], the
Appendix, or in [8]. Examples for oscillatory functions spaces await their apparition.
That’s depending on the possibility of getting an adequate �.

In the author’s paper [7], one �nds a reconstruction of the Bohr space AP (R; C),

starting from the set of all formal trigonometric series of the form
1P

k=1
ak exp[i�t], t 2 R,

with ak 2 C and �k 2 R, k � 1.
The condition which allows us to detach those that characterize those of Bohr almost

periodic functions is somewhat of a di�erent nature than conditions (28) and (45), utilized
above. Instead of imposing conditions on coe�cients, of a quantitative nature, we shall
require that the series be summable by a linear method (for instance, the Cesaro-Fejer-
Bochner method), with respect to the uniform convergence on R. The set of exponents,
apparently, does not play a direct role, such method being also based on the coe�cients.

Indeed, it is known, from the theory of Bohr almost periodic functions, that their
series are summable by the Cesaro-Fejer-Bochner method with respect to the uniform
convergence on R. Then, the "sum" is Bohr almost periodic. In other words, a trigono-

metric series like
1P

k=1
ak exp[i�kt], ak 2 C; � 2 R; k � 1, is characterizing an almost

periodic function in Bohr space AP (R; C), i� it is summable with respect to the uniform
convergence on RF . As we know, the uniform convergence is induced by the supremum
norm.

In concluding this paper, we emphasize again the need of investigation of these spaces
of series, like (1), de�ning the third stage of development in generalized Fourier Analysis.
Of course, the Fourier Analysis has many other chapters, inspired by the investigation of
classical series and the extension of such aspects appears as a future task for researchers.
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Abstract: This paper concerns with approximate (exact) controllability of nonlocal
impulsive fractional order semilinear control system with time varying delay. Simple
su�cient conditions for the controllability are derived by assuming that the corre-
sponding linear control system is controllable. The results are established under the
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1 Introduction

During the last three decades, various problems on fractional order systems have been
investigated. Fractional order semilinear equations arise in the modeling of the prob-
lems in engineering, physics, medicine, �nance, control and many other �elds. Particu-
larly, fractional order equations frequently appear in di�usion process, electrical science,
electrochemistry, control science and several more. For more details see [1{6] and the
references cited therein.

Controllability is the qualitative property of dynamical systems and is of particular
importance in mathematical control theory. In literature various controllability problems
for di�erent types of semilinear dynamical systems have been studied [7{19] using several
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methods. Among these methods, the �xed point approach is frequently used to show the
controllability of the system, in which the authors converted the controllability problem
into a �xed point problem with the assumption that the controllability operator has an
induced inverse in a function space [20{24]. In this approach, an inequality condition is
always required that involves various system parameters and sometimes this condition is
di�cult to verify in applications.

A large number of physical dynamic systems and biological processes include time
varying delay. The delays in engineering systems such as electric systems are often time-
varying and sometimes vary violently with time. It is however not necessary that a system
containing either time-invariant or time-varying delays is controllable. Thus the study
of various types of controllability is important for application points of view. Tomar and
Kumar [25] proved the approximate controllability of �rst order semilinear system with
time varying delay. In [26] Muthukumar et al. showed the approximate controllability of
nonlinear stochastic evolution time-varying delay systems. The approximate controlla-
bility of semilinear system in which the nonlinear term contains �xed delay in the state
has been addressed in [14, 27]. The approximate controllability of semilinear fractional
control systems, where the control function depends on multi-delay arguments and the
nonlocal condition is fractional, is discussed by Debbouche and Torres [28]. Recently,
Ji [29] studied the approximate controllability of fractional order control system without
the compactness conditions or Lipschitz conditions for the nonlocal function.

The dynamics of many processes are subject to abrupt changes, such as shocks, har-
vesting and natural disasters. Short term perturbations from continuous and smooth
dynamics are involved in these phenomena and the duration of these perturbations is
negligible in comparison with the duration of an entire evolution. Impulsive equations
have been developed in important �elds of science and technology such as modeling of
impulsive problems in physics, population dynamics, ecology, biotechnology, etc. and
hence the study of such systems is important. The existence and uniqueness of the
mild solution of fractional order impulsive semilinear system is discussed in [30, 31].
Using Krasnoselskii’s �xed point theorem Tai and Wang [32] studied the controllabil-
ity of fractional order impulsive neutral functional integrodi�erential systems in Banach
space. Su�cient conditions for the controllability of the impulsive fractional evolution
integrodi�erential equations in Banach spaces are established using Banach’s �xed point
theorem [33]. Kumar and Sukavanam [34] proved approximate controllability of frac-
tional order semilinear delayed systems under the Lipschitz continuity of nonlinear func-
tion and extended the results for impulsive systems also. Using Darbo-Sadovskii’s �xed
point theorem, su�cient conditions for approximate controllability of impulsive fractional
integro-di�erential systems with nonlocal conditions in Hilbert space are derived by Bal-
asubramaniam et al. [35]. However, it should be stressed here that there is no paper on
approximate controllability of impulsive nonlocal fractional order system so far in which
the nonlinear term contains time varying delay. This is the motivation of the present
paper.

The main objective of this paper is to provide simple su�cient conditions for approx-
imate controllability of semilinear systems (2). In this approach, uniform boundedness
of nonlinear function, compactness of C0-semigroup and inequality condition involving
system parameters are not required. Hence the results are more general and applied to a
large number of class of semilinear systems. To establish the results a relation between
the reachable set of semilinear system and that of the corresponding linear system is
shown. Finally, su�cient conditions for the controllability of fractional order impulsive
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system (1) are obtained. The nonlinear term and nonlocal condition make the paper
di�erent from [34].

The paper is organized as follows: in Section 2, the problem formulation is presented.
We give some basic de�nitions and lemma in Section 3. Su�cient conditions for approx-
imate controllability are obtained in Section 4. To illustrate the theory some examples
are provided in Section 5.

2 Problem Formulation

Let V , V̂ be Banach spaces and Z = L2([0; � ];V ), Y = L2([0; � ]; V̂ ) be the corresponding
function spaces. Further, let Ct := C([�r; t];V ), r > 0; 0 � t � � < 1 be a Banach
space of all continuous functions from [�r; t] into V and the norm on Ct be de�ned by

k’kCt = sup
�r���t

k’(�)kV :

Let 0 < t1 < t2 < ::: < tm < � . Consider the following fractional order nonlocal
impulsive system with time varying delay

cD�
t x(t) = Ax(t) +Bu(t) + f(t; x(�(t))); t 2]0; � ];
h(x) = ’; on [�r; 0];

�xjt=tk = Ik(x(tk)); k = 1; 2; :::;m;

9
=

;
(1)

where cD�
t is the Caputo fractional derivative of order �; 1=2 < � < 1. The state x(�)

takes values in Banach space V ; the control function u(�) takes values in Y ; A : D(A) �
V ! V is a linear operator with dense domain D(A) generating a C0-semigroup T (t); B
is a bounded linear operator from V̂ to V ; the function f : [0; � ] � V ! V is nonlinear;
� : [0; � ] ! [�r; � ] is a nondecreasing, non-expensive map such that it satis�es delay
property i.e. �(t) � t; 8 t 2 [0; � ]; h : C0 ! C0 and there exists a function � 2 C0 such
that h(�) = ’: For some examples of h one can see [36]. Here Ik; k = 1; 2; :::;m are
appropriate functions and �xjt=tk = x(t+k ) �x(t�k ), where x(t+k ) and x(t�k ) represent the
right and left limits of x(t) at t = tk, respectively. Let PC([�r; � ]; V ) = fx : [�r; � ] !
V : x(t) be continuous everywhere except for some tk at which x(t�k ) and x(t+k ) exist
and x(t�k ) = x(tk)g. It is easy to see that PC([�r; � ]; V ) is a Banach space with the
norm

kxkP C = supfkx(t)k : t 2 [0; � ]g:

To establish su�cient conditions for controllability of system (1), we �rst discuss
controllability of the following nonlocal fractional order semilinear control system with
time varying delay

cD�
t x(t) = Ax(t) +Bu(t) + f(t; x(�(t))); t 2]0; � ];
h(x) = ’; on [�r; 0]:

�
(2)

3 Preliminaries

In this section some basic de�nitions and lemma, which are useful for further develop-
ments, are given.
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De�nition 3.1 A real function f(t) is said to be in the space C�; � 2 R if there
exists a real number p > �, such that f(t) = tpg(t); where g 2 C[0;1[ and it is said to
be in the space Cm

� i� f (m) 2 C�, m 2 N .

De�nition 3.2 The Riemann-Liouville fractional integral operator of order � > 0 of
function f 2 C�; � � �1 is de�ned as

I�f(t) =
1

�(�)

Z t

0
(t� s)��1f(s)ds;

where � is the Euler gamma function.

De�nition 3.3 If the function f 2 Cm
�1 and m is a positive integer then we can

de�ne the fractional derivative of f(t) in the Caputo sense as

cD�
t f(t) =

1
�(m� �)

Z t

0
(t� s)m���1fm(s)ds; where m� 1 � � < m:

De�nition 3.4 [37] A function x 2 C� is said to be the mild solution of (2) if it
satis�es

x(t) = S�(t)�(0) +
Z t

0
(t� s)��1T�(t� s)[Bu(s) + f(s; x(�(s)))]ds; t 2 [0; � ];

x(t) = �(t); t 2 [�r; 0];

where

S�(t)x =
Z 1

0
��(�)T (t��)xd�;

T�(t)x = �
Z 1

0
���(�)T (t��)xd�:

Here ��(�) = 1
��

�1�1=� �(��1=�) is the probability density function de�ned on
(0;1), that is ��(�) � 0; and

R1
0 ��(�)d� = 1: We de�ne  �(�) as  �(�) =

1
� �1

n=1(�1)n�1��n��1 �(n�+1)
n! sin (n��), � 2 (0;1):

De�nition 3.5 Let x(�) be the state value of system (2) at time � corresponding to
the control u. The system (2) is said to be approximately controllable in time interval
[0; � ], if for every desired �nal state � and � > 0 there exists a control function u 2 Y
such that the solution of (2) satis�es

kx(�) � �k � �:

The above de�nition gives exact controllability of system (2) i� � = 0.

The set K� (f) = fx(�) 2 V : x(�), is the mild solution of (2)g and is called the reach-
able set of the system (2). If f � 0, then the system (2) is known as the corresponding
linear system and denoted by (2)�. In this case, K� (0) denotes the reachable set of the
linear system (2)�.

De�nition 3.6 The system (2) is said to be approximately (exactly) controllable on
[0; � ] if K� (f) = V (K� (f) = V ), where K� (f) denotes the closure of K� (f): Clearly, the
corresponding linear system (2)� is approximately controllable if K� (0) = V:
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Lemma 3.1 For any �xed t � 0; S�(t) and T�(t) are linear and bounded operators,
that is, for any x 2 V , kS�(t)xk � Mkxk and kT�(t)xk � M�

�(�+1) kxk; where M is a
constant such that kT (t)k � M , for all t 2 [0; � ] (see Lemma 3.2 [37]).

We now de�ne the operator F : Z ! Z as

[Fx](t) = f(t; x(�(t))); x 2 Z:

The following conditions are required to establish the results:

[H1] The nonlinear function satis�es the Lipschitz continuity, i.e. there exists some
positive constant l such that

kf(t; x) � f(t; y)kV � lkx� ykC� ; for all x; y 2 V:

Remark 3.1 Under assumption [H1] one can easily verify that the mild solution of
system (2) exists and is unique.

[H2] Range of function F is a subset of closure of range of B, i. e.

R(F ) � R(B):

Remark 3.2 To support this condition an example is given. Also if B = I the
range condition is trivially true. In several real life problems the above condition is also
satis�ed [38].

[H3] The linear system (2)� is approximately controllable.

4 Main Results

4.1 Controllability of semilinear system

Theorem 4.1 Under the assumptions [H1]-[H3] the fractional order semilinear con-
trol system (2) is approximately controllable.

Proof. To prove the result, we will show that K� (0) � K� (f). For this, we assume
that x(�) is the mild solution of (2)� corresponding to a control u 2 Y which is given by

x(t) = S�(t)�(0) +
R t

0 (t� s)��1T�(t� s)Bu(s)ds; t 2 [0; � ];
x(t) = �(t); t 2 [�r; 0]:

�
(3)

Since Fx 2 R(B) (by [H2]), for a given � > 0 there exists a control function w 2 Y such
that

kFx�BwkZ � �: (4)

We now assume that y(t) is the mild solution of (2) corresponding to the control (u�w)
in Y then

y(t) = S�(t)�(0) +
R t

0 (t� s)��1T�(t� s)fB(u� w) + [Fy]g(s)ds; t 2 [0; � ];
y(t) = �(t); t 2 [�r; 0]:

�
(5)
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If t 2 [0; � ] then from (3) and (5), we have

x(t) � y(t) =
Z t

0
(t� s)��1T�(t� s)[Bw � Fy](s)ds

=
Z t

0
(t� s)��1T�(t� s)[Bw � Fx](s)ds

+
Z t

0
(t� s)��1T�(t� s)[Fx� Fy](s)ds:

Taking norm on both sides and using (4), we get

kx(t) � y(t)kV �
Z t

0
(t� s)��1kT�(t� s)kkBw(s) � Fx(s)kV ds

+
Z t

0
(t� s)��1kT�(t� s)kk[Fx](s) � [Fy](s)kds

�
M�

�(�+ 1)

�Z t

0
(t� s)2��2ds

�1=2
�

�Z t

0
kBw(s) � Fx(s)k2ds

�1=2

+
M�

�(�+ 1)

Z t

0
(t� s)��1k[Fx](s) � [Fy](s)kV ds

�
M�

�(�+ 1)

�Z t

0
(t� s)2��2ds

�1=2�
kFx�BwkZ

�

+
M�

�(�+ 1)

Z t

0
(t� s)��1k[Fx](s) � [Fy](s)kV ds

�
M��

�(�+ 1)

�Z t

0
(t� s)2��2ds

�1=2
+

M�
�(�+ 1)

�
Z t

0
(t� s)��1kf(s; x(�(s))) � f(s; y(�(s)))kV ds

�
M��

�(�+ 1)

r
�2��1

2�� 1

+
Ml�

�(�+ 1)

Z �

0
(� � s)��1kx� ykC�ds:

For all values of t 2 [�r; � ], we have

kx(t) � y(t)kV �
M��

�(�+ 1)

r
�2��1

2�� 1
+

Ml�
�(�+ 1)

Z �

0
(� � s)��1kx� ykC�ds:

Using Gronwall’s inequality, we get

kjx� ykC� �
M��

�(�+ 1)

r
�2��1

2�� 1
exp

�
Ml�

�(�+ 1)

Z t

0
(t� s)��1ds

�

�
M��

�(�+ 1)

r
�2��1

2�� 1
exp

�
Ml��

�(�+ 1)

�
:
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Since the right hand side of above inequality depends on � > 0 and � is arbitrary, it is
clear that kx � ykC� can be made arbitrary small by choosing suitable value of control
function w. It now follows that the reachable set of system (2) is dense in the reachable
set of system (2)�, which is dense in V due to condition [H3]. Hence the approximate
controllability of (2)� implies that of the semilinear control system (2). This completes
the proof.

4.2 Controllability of Impulsive System

We now prove the approximate controllability of the system (1).

De�nition 4.1 [30, 31] The mild solution of the system (1) is a function x 2
PC([�r; � ];V ) such that it satisfy the following integral equation

x(t) =

8
>>>>>>>>><

>>>>>>>>>:

S�(t)�(0) +
R t

0 (t� s)��1T�(t� s)[Bu(s) + f(s; x(�(s)))]ds; t 2]0; t1];
S�(t� t1)[x(t�1 ) + I(x(t�1 ))] +

R t
t1

(t� s)��1T�(t� s)[Bu(s)
+f(s; x(�(s)))]ds; t 2]t1; t2];
� � �
S�(t� tm)[x(t�m) + I(x(t�m))] +

R t
tm

(t� s)��1T�(t� s)[Bu(s)
+f(s; x(�(s)))]ds; t 2]tm; � ];
�(t); t 2 [�r; 0]:

To establish the result we need one more hypothesis on the impulsive function as follows:
[H4] The functions Ik, k = 1; 2; � � � ;m are continuous and uniformly bounded.

Theorem 4.2 Under the assumptions [H1]{[H4] the fractional order semilinear con-
trol system (1) is approximately controllable.

Proof. Let y(t) be the mild solution of (1) corresponding to the control (u�w) then

y(t) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

S�(t)�(0) +
R t

0 (t� s)��1T�(t� s)[B(u � w)(s)
+f(s; y(�(s)))]ds; t 2]0; t1];
S�(t� t1)[y(t�1 ) + I(y(t�1 ))] +

R t
t1

(t� s)��1T�(t� s)[B(u� w)(s)
+f(s; y(�(s)))]ds; t 2]t1; t2];
� � �
S�(t� tm)[y(t�m) + I(y(t�m))] +

R t
tm

(t� s)��1T�(t� s)[B(u � w)(s)
+f(s; y(�(s)))]ds; t 2]tm; � ];
�(t); t 2 [�r; 0]:

The mild solution x(t) of (2)� corresponding to a control u is given by

x(t) = S�(t)�(0) +
Z t

0
(t� s)��1T�(t� s)Bu(s)ds; t 2]0; � ];

x(t) = �(t); t 2 [�r; 0]:

To show the approximate controllability of semilinear system (1), we divide the interval
[�r; � ] into subintervals [�r; 0]; ]0; t1], ]t1; t2]; � � � ; ]tm; � ]: Now if t 2] � r; t1] the approx-
imate controllability of the system follows from Theorem 4.1. If t 2]t1; t2], since both
y(t�1 ) and I(y(t�1 )) are bounded, we are able to prove the approximate controllability in
the interval t 2]t1; t2] as shown in Theorem 4.1. Similarly, we can show the approximate
controllability in subsequent intervals. This completes the proof of the theorem.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 420{430 427

5 Examples

In this section, we give examples to show the e�ectiveness of the developed theory.

Example 5.1 Let V = L2(0; �) and A � d2

dx2 with D(A) consisting of all y 2 V with
d2y
dx2 and y(0) = 0 = y(�). Put

�n(x) = (
2
�

)1=2 sin(nx); 0 � x � �; n = 1; 2; � � � ;

then f�ng is an orthonormal base for V and �n is the eigenfunction corresponding to the
eigenvalue �n = �n2 of the operator A: Then the C0-semigroup T (t) generated by A has
exp(�nt) as the eigenvalues and �n as their corresponding eigenfunctions, see [39].

De�ne an in�nite-dimensional space V̂ by

V̂ =

(

u j u =
1X

n=2

un�n; with
1X

n=2

u2
n < 1

)

:

The norm in V̂ is de�ned by

kukV̂ =

 
1X

n=2

u2
n

!1=2

:

De�ne a continuous linear map B from V̂ to V as

Bu = 2u2�1 +
1X

n=2

un�n for u =
1X

n=2

un�n 2 V̂ :

Let us consider the following fractional order semilinear control system of the form

cD�
t y(t; x) =

@2y(t; x)
@x2 +Bu(t; x) + f(t; y(�(t))); t 2 [0; � ]; 0 < x < �

y(t; 0) = y(t; �) = 0; t > 0

y0(x) =
1
r

Z 0

�r
exp (2s)y(s; x)ds: (6)

Let �(t) = t2

t2+1 � r be time varying aftere�ect such that �(t) � t for all t 2 [0; � ]: If
we take h(y)(t) = g(y) for y 2 C0, t 2 [�r; 0]; ’ = y0, where g : C0 ! V is such that
g(y)(x) = 1

r

R 0
�r exp (2s)y(s; x)ds. Thus we are able to de�ne a function � 2 C0 such that

�(t) = 1
ky0 on [�r; 0] with k = 1

r

R 0
�r exp (2s)ds 6= 0 and

h(�)(t) =
1
r

Z 0

�r
exp (2s)

�
1
k
y0

�
ds = y0 = ’(t):

Thus the system (6) can be written in the abstract form given by (2). If the conditions
[H1]{[H3] are satis�ed, then the approximate controllability of system (6) follows from
Theorem 4.1. For example, if we consider the function f as

f(t; z) = lkzk(�3(z) + �4(z));

where l is a positive constant. Here it is clear that f satis�es [H3] with Lipschitz constant
l and R(f) � R(B): However, it should be noted that the nonlinear term is not uniformly
bounded.
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Example 5.2 Let us consider the following fractional order impulsive system with
�nite delay

cD�
t y(t; x) =

@2y(t; x)
@x2 +Bu(t; x) + f(t; y(t� r; x)); t 2 [0; � ]; 0 < x < �;

y(t; 0) = y(t; �) = 0; t > 0;
y(t; x) = ’; t 2 [�r; 0];

y(t+k ; x) � y(t�k ; x) = Ik(y(t�k ; x)); k = 0; 1; 2; � � � ; (7)

where Ik > 0, k = 1; 2; � � � ;m and ’ 2 D = f� : [�r; � ] ! V : �(t) is continuous
everywhere except for some tk at which �(t�k ) and �(t+k ) exist and �(t�k ) = �(tk)g:

The system (7) can be reformulated in the abstract form given by (1). The ap-
proximate controllability of the system (7) follows from Theorem 4.2 if the conditions
[H1]{[H4] are satis�ed.

Conclusion

The approximate controllability of nonlocal impulsive fractional order semilinear time
varying delay systems is proved. In literature, �xed-point theory has been used to estab-
lish the approximate controllability of semilinear control systems. This approach needs
certain inequality conditions involving various system parameters which are sometimes
di�cult to be veri�ed. Here, the approximate controllability of nonlocal impulsive frac-
tional order semilinear control system has been proved for a certain class of nonlinear
functions under simple su�cient conditions.
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Abstract: We investigate the generation of highly complex dynamics within non-
invertible transformations of speci�c sets of continuous-time variables. We show that
the time series complexity indices depend on the previous values emerging from the
initial variables, through analytical complexity models for Fourier spectra, Lyapunov
exponents and correlation functions. In some cases, these systems can produce com-
pletely unpredictable dynamics in a deterministic way. A comparison of the theory
with standard numerical complexity estimators is presented.
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1 Introduction

Polynomial functions used as non-linear, non-invertible transformations can be found in a
large number of systems that exhibit chaos and hyperchaos, among which we can highlight
a modi�ed version of Chua’s circuit [1], and the Ikeda system implemented in an electro-
optical feedback oscillator with time delay [2{4], whose nonlinear transfer characteristic is
a sine function. In discrete-time one-dimensional systems, the non-invertibility is essential
for the existence of chaos [5], for example, the Logistic, Tent and Bernoulli maps use this
kind of nonlinearity. These maps have been used for the development of the deterministic
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randomness theory, which includes random maps that generate unpredictable sequences
[6{9], demonstrating that autonomous dynamical systems, containing nonlinear terms
described by periodic functions of the variables, can generate random dynamics.

Complexity theory has developed a set of measures that can be used according to the
system under study [19{21], and the information we need to extract for an application
or theory. In that sense, the complexity indices we consider to characterize the dynamics
are the correlation function and the Lyapunov exponent, providing us information about
the dependence between di�erent values of the data at di�erent times, and the level of
sensitive dependence on the set of initial values, respectively. In addition, the Fourier
spectrum is an index that we choose in order to determine if there exist phase coherences
[22] in the spectral structures under consideration. These three indices ful�l the role
of highly complex dynamics indicators. Analytical complexity indices for chaotic and
random maps have also been developed to characterize chaotic dynamics accurately,
therefore important mathematical models have emerged to study the statistical properties
of the Ulam [23], Bernoulli [24] and piecewise linear maps [25].

In applications and experiments, continuous-time hyperchaos has been generated
by non-linear, non-invertible static transformations of low-dimensional signals in elec-
tronic [14] and electro-optical systems [15], prompting important developments of chaotic
communications schemes [16] and as high-quality random number generators [17, 18].
These developments inspired us to investigate the properties that allow non-invertible
transformations of oscillating functions to control the generation of deterministic ran-
domness without the need for any external random input.

In the present paper, we show that there exists a deterministic method to generate
unpredictable dynamics, in the sense that xn+1 can not be determined by any sequence
xn; xn�1; : : : ; x0 of previous values, controlled by the topological properties of the non-
linear function. We discuss how those complexity indices of the dynamics depend on the
kind of nonlinearity.

2 Preliminaries and Models

The well-known discrete-time solution of the equation that satis�es the Chebyshev poly-
nomial, applied k-times onto itself, is

xn = cos[kn arccosx0]: (1)

Under the initial condition x0 = cos(�q=p), this function can generate aperiodic orbits
[10]

xn = cos
�
kn

�
�q
p

��
; (2)

where p and q are real numbers.
In previous approaches, the parameter k can be set as a rational number greater than

one, obtaining highly complex maps [11]. In fact, depending on the particular value
of k, these functions can produce truly random numbers. For example, if k is chosen
irrational, the numbers generated by equation (2) are statistically independent [12, 13].

Generally, equation (2) has been studied by the representation xn = h(f(n)), with h(�)
as a non-invertible function and f(n) as an oscillating dynamics, able to generate unpre-
dictable time series. Consequently, if initially we consider f(n) as a string of values fzig,
it is possible to rewrite equation (1) for the initial condition x0 = cos[�(z1; z2; : : : ; zn)]
as follows,
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Figure 1: Polynomial functions with the variation of k and �rst return maps of the dynamics
produced. The function to be transformed is a time series z(t) from the R�ossler attractor.

xn = cos[kn�(z1; z2; : : : ; zm)]; (3)

where k 2 N � f1g is the iteration parameter of the map, n is the discrete time of the
sinusoidal map and m is the number of values of the sequence fzig. From a simple
inspection of this equation we notice that the iteration variable k acts as an amplifying
parameter or a gain, that can be used to control the number of maxima and minima of
the static sinusoidal function used to transform the oscillating dynamics.

The sequence fzig is a known time series that can be de�ned by the following oscil-
lating functions z(t): a) periodic, b) 2-quasiperiodic, c) R�ossler [26] and d) Lorenz [27]
chaotic attractors. These oscillating functions have been chosen to analyze the gener-
ation of unpredictable time series starting from time series z(t) with di�erent levels of
complexity. Therefore, equation (3) is represented as follows

x(t)
n = cos(kn�z(t)) � h(f(n; t)): (4)

This discrete-time expression means that for each n it is possible to set a relevant
continuous-time string of values z(t). The use of continuous time series z(t) is rele-
vant for practical purposes. In deed, some of this signals can be implemented and solved
experimentally by Analog Computing Techniques, allowing us to obtain deterministic
random number generators for scienti�c and engineering tasks.

The chaotic time series from the R�ossler attractor [26] is used as z(t) in Figure 1,
where we show the �rst-return maps. The parameter k is modi�ed in h(�) as follows:
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Figure 2: Polynomial functions with the variation of k and �rst return maps of the dynamics
produced. The function to be transformed is a time series z(t) from the Lorenz attractor.

(a) k = 2, (c) k = 3, (e) k = 4 and (g) k = 5. The stretch-folding mechanism [5]
is helpful to explain qualitatively the action of the function h(�) on the quasiperiodic
signal z(t): Figure 1.b. shows that in the stretch step the object is elongated to twice
its original length, causing the well-known exponential divergence between near orbits.
In the folding step the interval is folded back around its center, with the orbits bounded
to the interval [�1; 1]. When we increase k further and make available more peaks and
valleys on h(�), the process of stretch-folding is accumulated.

In the case of the Lorenz system, we emphasize the fact that the �rst return map
generated with z(t), see Figure 2.b, has lost its initial topological shape when k = 2, i.e.,
the dynamics changed from a 2-scroll to a single-scroll chaotic attractor. This indicates
that the initial topology of an object can be changed by the stretch-folding process
provided by the non-invertible transformation function. In Figures 1.h and 2.h there
occurs a high-dimensional mixture of orbits such that it is not longer possible to infer
the structure of the object before the transformation.

3 Complexity Indices

We begin the Fourier spectrum analysis from the simplest oscillating functions, i.e. pe-
riodic time series. The transformed function is

h(f(t)) = cos[G sin(!t)]; (5)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 431{440 435

with ! = 2�50 and G = kn�. By Euler’s formula ej� = cos � + j sin � we express h(�) as
follows:

h(f(t)) = RefejG sin(!t)g = Refy(t)g; (6)

with y(t) = ejG sin(!t). This function is written as the exponential Fourier series,

y(t) = ejG sin(!t) =
1X

p=�1

ypejp!t; (7)

where yp is the exponential Fourier coe�cient,

yp =
1
T

Z T=2

�T=2
y(t)e�j!tdt = Jp(G): (8)

Substituting equation (8) in equation (6), we obtain the time series in terms of the Bessel
function of �rst kind,

h(f(t)) =
1X

p=�1

Jp(G) cos(p!t): (9)

Figure 3: Spectral characteristics of the time series, initially (a) and (c), and when G = 5� (b)
and (d). For periodic (upper) and 2-quasiperiodic (lower) functions.

Next we consider the transformed function from the 2-quasiperiodic time series:

h(f(t)) = cos[G(sin(!1t) + 0:5 sin(!2t))]; (10)

where !1 = 2�50 and !2 = 2�50
p

2. Following the above procedure, the transformed
time series in terms of Bessel functions of the �rst kind is

h(f(t)) =
1X

p1; p2=�1

Jp1 (G)Jp2 (G) cos(p1!1 + p2!2)t: (11)

The Fourier spectrum h(f(!)) is obtained from the Fourier transform. As expected,
as G ! 1, the number of represented frequencies will be greater, because these depend
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on the p values of the Bessel function Jp(G), i.e., if G is large, the number p of spectral
peaks will be bigger [28]. In Figures 3.a and 3.c we show periodic and 2-quasiperiodic
functions, respectively. Amplifying the periodic time series with G = 5� just in the case
where n = 1, see Figures 3.b and 3.d, we found that the spectra of the transformed
functions have been �lled due to the increment of G with respect to the initial spectra.

Figure 4: Spectral characteristic of the time series, initially (a) and (c), and when G = 5� (b)
and (d). For R�ossler (upper) and Lorenz (lower) chaotic functions.

Using chaotic functions, we assume in the Fourier analysis that the chaotic time series
can be expressed as a sum of m harmonic functions, therefore it is correct to write the
time series as follows

h(f(t)) =
P1

p1=�1 � � �
P1

pm=�1 Jp1 (G) � � � Jpm (G)

� cos(p1!1 + � � � + pm!m)t:
(12)

The R�ossler and Lorenz spectra are shown before (Figures 4.a,c) and after the transforma-
tion (Figures 4.b,d). These transformed broadband spectra are qualitatively comparable
with that of white noise, over the range of frequencies that we have considered initially.
They are composed by a very large number of Bessel functions Jn(G). Interestingly, the
phase coherences that existed in the spectra before the transformation have disappeared,
especially in the most coherent one which is the R�ossler system.

As yet we have characterized the maps by their qualitative complexity. In the follow-
ing, we will add statistical analysis to strengthen the qualitative perception about those
complex maps.

The correlation function is determined via the Frobenius-Perron operator applied to
the Chebyshev polynomials of the �rst kind. We found the topological conjugate of the
equation (1) to the piecewise map with the application of x ! x = cos[�z(t)], then
(z(t))n+1 = �[k(z(t))n � s] in (z(t))n : [0; 1] ! [0; 1], for all t

(z(t))n+1 =

(
k(z(t))n; 0 � (z(t))n � 1=k;

�k(z(t))n + 1; 1=k < (z(t))n � 1:
(13)

This equation indicates that the nth state constitutes a domain of values depending on
z(t) initially chosen.
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The Frobenius-Perron operator [29] acting on an arbitrary function B(z(t)), from the
equation (13),

HB(z(t)) =
1
k
B

�
z(t)
k

�
�

1
k
B

�
1
k

(1 � z(t))
�
; (14)

allows us to determine the normalized correlation function of orbits belonging to an
attractor 
 given by

Cn =
h�z(t)jHn�z(t)i

h�z(t)j�z(t)i
; (15)

where �z(t) = z(t) � hz(t)i, and consider the linear operator

H l(z(t)) = �l l(z(t)); (16)

where �l is an eigenvalue and  l(z(t)) is an eigenfunction of H. We �nd �l by constructing
an orthonormal system [30], with �l = hH lj mi,

�l =
1

kl+1 [1 � (�1)l]; (17)

where

j mi =
���(�1)m�(m)(z(t))=m!

E
; h lj = hz(t)lj; B(z) = zl; l;m = 0; 1; 2; : : : :

If l = 1, associated to the �rst degenerate eigenvalue from H, and approximating �z(t) =
b1 1 in equation (15), we obtain Cn = C0�n

1 , with �1 = 2k�2

Cn(k) = C0

�
2
k2

�n

; (18)

where C0 is the correlation function of the attractor initially.
Moreover, the largest Lyapunov exponent can be determined by [31]

�max = lim
t!1

1
t

ln
����
�(z(t))n

�(z(0))0

���� ; (19)

with j(�(z(0))0j ! 0, indicating that the rate of divergence of nearby trajectories depends
on the Lyapunov exponent of the initial attractor. Now let us apply the transformation
x ! x = cos[�z(t)] in the equation (3), obtaining (z(t))n = �[kt(z(t))0 � s], and substi-
tuting in equation (19),

�max = �0 + n ln jkj; (20)

where �0 = ln j�(z(t))0=�(z(0))0j. Similarly, as in the correlation function expression,
the Lyapunov exponent depends on its initial exponent value, evaluated for the attractor
used as initial condition.

The analytical expressions just determined are exact expressions that evaluate the
complexity of the generated maps. We need to corroborate their behavior by comparing
the numerical estimations of the autocorrelation coe�cients and the largest Lyapunov
exponents using the software package TISEAN [32].

Figures 5 and 6 show that the analytical approaches in equations (18) and (20) are
accurate, because the Lyapunov exponent �(k) increases and the correlation function
C(k) decreases when k is increased, after setting n = 1. Here, the graphics have been
separated into functions that can be expressed as polynomials of even and odd degree:
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Figure 5: Complexity indices: largest Lyapunov exponent �(k) and autocorrelation coe�cient
C(k) of periodic (a,b) and 2-quasiperiodic (c,d) functions when the gain k is modi�ed.

the solid curve corresponds to the odd polynomial functions and the dotted curve cor-
responds to the even ones. This separation is established in order to visualize that the
behavior of odd degree polynomials generate �rst return maps qualitatively more entan-
gled. The statistical analysis shows that the polynomials of even and odd degree produce
approximately the same evolution of the complexity index. We highlight that the rate
of mixing increases when the gain parameter k is increased, it means that no large time
intervals are needed to reach close to zero values for correlation decay.

The Lyapunov exponent has an increasing behavior when k is incremented. This
result agrees with equation (20) and indicates the intrinsic relationship between the
Lyapunov exponent and the correlation function: as the exponential divergence of nearby
trajectories increases due to the polynomial function, the correlation function decreases,
i.e., the time series becomes more unpredictable when k ! 1. Furthermore, it was
found that the greater the complexity of the time series z(t), the greater the Lyapunov
exponents will be, and the autocorrelation coe�cients will approach zero for values of k
increasingly large. All the correlations of the time series analyzed decay to zero, but the
more complex ones decay faster due to the dependence on C0.

Figure 6: Complexity indices: largest Lyapunov exponent �(k) and autocorrelation coe�cient
C(k) of R�ossler (a,b) and Lorenz (c,d) functions when the gain k is varied.
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4 Conclusion

Complex dynamics has been generated by non-linear, non-invertible transformations of
oscillating functions. These transformations made the time series become unpredictable
as measured by correlations and Lyapunov exponents. Objects in the phase space exhib-
ited abrupt qualitative changes in their properties when k is increased, indicating that
these systems are able to modify the initial topology of the object. Deep characteriza-
tion of the polynomial functions showed that the non-invertibility is associated with the
generation of complexity, as shown by the decay to zero of the autocorrelation coe�-
cients and increased Lyapunov exponents, both analytically and numerically calculated.
The Fourier analysis showed that as the number of peaks and valleys were increased
in the transformation function, the time series exhibited spectra with increasing band-
width, losing the structure present initially and rendering the signals white-noise like.
This loss of structure in the spectra speaks of linear correlations being removed by the
transformation, revealing a controlled increase of complexity by this process.
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