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Abstract: In this paper, the attitude synchronization problem of two dumbbell satel-
lite models is addressed. To achieve this purpose, a synchronization approach based
on generalized Hamiltonian systems and state observer design reported in literature,
is applied. Potential applications of attitude synchronization are multi-satellites ar-
rays for self assembly structures, and resolution enhancement. Numerical results of
the synchronization behavior achievement are presented.

Keywords: dumbbell satellites; attitude synchronization; generalized Hamiltonian
systems; nonlinear observers.

Mathematics Subject Classification (2010): 34D06, 93B07, 93C10.

1 Introduction

Modern space missions involve the use of multiple small satellites, this scheme introduces
several advantages compared to single satellite missions. An interesting topic regarding
these missions, is the attitude synchronization of the satellites. This allows to handle
larger structures than what can be launched. Some interesting applications include:
resolution enhancement, interferometry or, super-sized focal length [1], this behavior is
also useful for in-orbit-self-assembly operations [2].
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The mathematical model considered in this paper is reported in [3] and corresponds
to a dumbbell satellite. This model represents a simple structure consisting of two point
masses connected by a mass-less rod. This dumbbell satellite model is suitable for a
straightforward investigation of the general properties of the rigid body motion in a
gravity field and has attracted the attention of scientists since the middle of the past
century [4].

For attitude synchronization of two dumbbell satellites, the approach used in this
paper is the generalized Hamiltonian systems and design of nonlinear observer presented
in [5] which has been successfully applied in synchronization of chaotic systems, see
e.g. [6–11].

The paper is arranged as follows: Section 2 describes briefly the mathematical pre-
liminaries on synchronization of nonlinear oscillators from the perspective of generalized
Hamiltonian systems and design of nonlinear observer. Section 3 describes the dumbbell
satellite mathematical model used for attitude synchronization purposes. Then, Section
4 presents the attitude synchronization of two dumbbell satellites in master-slave cou-
pling via generalized Hamiltonian forms and state observer design approach. In Section
5, numerical results are discussed and finally some conclusions are given in Section 6.

2 Synchronization Via Generalized Hamiltonian Forms and Observer Design

In this section, briefly we describe the synchronization for two nonlinear dynamical sys-
tems via generalized Hamiltonian forms and nonlinear observer design approach, for
details see [5].

2.1 Generalized Hamiltonian Systems

Consider the following nonlinear dynamical system described by the state equation

ẋ = f (x) , x ∈ R
n. (1)

Following the approach provided in [5], many physical nonliner systems described by
equation (1) can be written in the following generalized Hamiltonian canonical form,

ẋ = J (x)
∂H

∂x
+ S (x)

∂H

∂x
, x ∈ R

n, (2)

where H (x) denotes a smooth energy function which is globally positive definite in R
n.

The column gradient vector of H , denoted by ∂H/∂x, is assumed to exist everywhere.
One of the most frequently used functions H (x) is the quadratic energy function of the
form

H (x) =
1

2
xTMx (3)

with M being a symmetric, positive definite, constant matrix. In such case, ∂H/∂x =
Mx. The square matrices J (x) and S (x) , present in (2), satisfy, for all x ∈ R

n, the
following properties, which represent the energy managing structure of the system:

J (x) + J T (x) = 0, S (x) = ST (x) . (4)

The vector field J (x) ∂H
∂x exhibits the conservative part of the system and it is also

referred to as the work-less part, or work-less forces of the system. The matrix S (x)
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is, in general, a symmetric matrix describing the working or nonconservative part of the
system. For certain systems, the symmetric matrix S (x) is negative definite or negative
semidefinite, in such cases the vector field is known as the dissipative part of the system.

Sometimes, specially in the contex of state observer design, the system under obser-
vation will be written in the special form

ẋ = J (x)
∂H

∂x
+ S (x)

∂H

∂x
+ F (x) , (5)

where F (x) represents a locally destabilizing vector field and S (x) is a symmetric ma-
trix, not necesarily of definite sign. However, many physical systems are already in the
generalized Hamitlonian canonical form (2).

2.2 Nonlinear Observer Design for a Class of Systems in Generalized Hamil-
tonian Form

For a complete description of the synchronization method, the reader is encouraged to
see [5]. A special class of generalized Hamiltonian systems with destabilizing vector field
and linear output map y is given by

ẋ = J (y) ∂H
∂x + (I + S) ∂H

∂x + F (y) , x ∈ R,n

y = C ∂H
∂x , y ∈ R

m,
(6)

where S is a constant symmetric matrix, not necessarily of definite sign. The matrix I
is a constant skew symmetric matrix. The vector variable y is referred to as the system
output. The matrix C is a constant matrix.

The estimate of the state vector x is denoted by ξ, and consider the Hamiltonian
energy function H (ξ) to be the particularization of H in terms of ξ, similarly, η is
the estimated output computed in terms of the estimated state ξ. The gradient vector
∂H (ξ) /∂ξ is, naturally, of the form Mξ with M being a constant symmetric positive
definite matrix.

A dynamic nonlinear state observer for the system (6) is obtained as

ξ̇ = J (y) ∂H
∂ξ + (I + S) ∂H

∂ξ + F (y) +K (y − η) ,

η = C ∂H
∂ξ ,

(7)

where K is a constant vector, known as the observer gain. The state estimation error,
defined as e = x− ξ and the output estimation error, defined as ey = y− η, are governed
by

ė = J (y) ∂H
∂e + (I + S − KC) ∂H

∂e , e ∈ R
n,

ey = C ∂H
∂e , ey ∈ R

m,
(8)

where the vector ∂H (e) /∂e with some abuse of notation, stands for the gradient vector of
the modified energy function, ∂H (e) /∂e = ∂H (x) /∂x−∂H (ξ) /∂ξ = M (x− ξ) = Me.
In the rest of this work, when needed, it is set that I + S = W .
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2.3 Synchronization of dynamical systems

Definition 2.1 Synchronization problem ( [12]): We say that the slave satellite (7)
synchronizes with the master satellite (6), if

lim
t→∞

‖x (t)− ξ (t)‖ = 0, (9)

no matter which initial conditions x (0) and ξ (0) hold. Here the state estimation error
e(t) = x (t)− ξ (t) represents the synchronization error.

Theorem 2.1 ( [5]) The state x(t) of the nonlinear system (6) can be globally, ex-
ponentially, asymptotically estimated by the state ξ(t) of an observer of the form (7), if
the pair of matrices (C,W) , or the pair (C,S), is either observable or, at least, detectable.

An observability condition on either of the pairs (C,W) or (C,S) is clearly a sufficient
but not necessary condition for asymptotic state reconstruction. A necessary and suffi-
cient condition for global asymtotic stability to zero of the state estimation error e(t) is
given by the following theorem.

Theorem 2.2 ( [5]) The state x(t) of the nonlinear system (6) can be globally, ex-
ponentially, asymptotically estimated by the state ξ(t) of an observer of the form (7) if
and only if there exists a constant matrix K such that the symmetric matrix

[W −KC] + [W −KC]T = [S − KC] + [S − KC]T

= 2
[

S − 1
2

(

KC + CTKT
)]

is negative definite.

The application of this method on the field of synchronization of chaotic circuits
implies the design of a state observer of the form (7) to act as the receiver of the chaotic
system in the form (6) considered as the emitter.

Several advantages of generalized Hamiltonian systems approach over other synchro-
nization techiniques are reported in the literature, the following advantages are enumer-
ated in [5] and [12] and reproduced below:

• It enables synchronization be achieved in a systematic way and clarifies the issue
of deciding on the nature of the output signal to be transmitted.

• It can be successfully applied to several well-known chaotic systems.

• It does not require the computation of any Lyapunov exponent.

• It does not require initial conditions belonging to the same basin of attraction.

3 Dumbbell Satellite Model

Typical models of a dumbbell satellite are given in [3] and [4]. In Figure 1 a graphical
interpretation can be observed. This model consists of two point masses coupled by a
mass-less rod. In this case, θ represents the attitude of the satellite and the (r, φ)-tuple
represents the position of the satellite with respect to a reference point.
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m

m
l
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Figure 1: Dumbbell satellite representation.

In this model, the Lagrangian of the system with a normalized universal gravitational
constant (G), is given by

L = m(ṙ2 + r2φ̇2 + l2(θ̇ − φ̇)2) +
m√

l2 + r2 − 2lrcosθ
+

m√
l2 + r2 + 2lrcosθ

. (10)

Applying the Euler-Lagrange equation for θ, we can obtain the following differential
equation

2l2(θ̈ − φ̈) +
lrsinθ

(l2 + r2 + 2lrcosθ)3/2
− lrsinθ

(l2 + r2 − 2lrcosθ)3/2
= 0 (11)

by using a binomial approximation for both denominators, and taking into account that
r ≫ l, one can derive the differential equation of the attitude dynamics of a dumbbell
satellite

θ̈ +
3sin(2θ)

2r3
= φ̈. (12)

By using a similar procedure for r and φ, the differential equations are:

r̈ − rφ̇2 = − 1

r2
, (13)

d

dt
(r2φ̇) = 0. (14)

Equations (13) and (14) describe the Keplerian motion. By using the well-known
solutions, φ̈ can be computed. The equation (12) for the attitude dynamics of a dumbbell
satellite is given by

θ̈ +
3

2

sin (2θ)

r3
= − 2ε

√
1− ε2 sinE

a3(1− ε cosE)4
. (15)

Here a and ε refer to the semi-major axis and the eccentricity of the dumbbell sate-
llite’s orbital motion, respectively. E denotes the so-called eccentric anomaly and is
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Figure 2: Motion trajectory of a single dumbbell satellite.

related to time t via Kepler’s equation. If E is used eventually as an independent variable
rather than t [3], the second order differential equation for θ̈ can be obtained as follows

d2θ

dE2
− dθ

dE

ε sinE

1− ε cosE
+

3

2

sin (2θ)

1− ε cosE
= −2ε

√
1− ε2 sinE

(1− ε cosE)2
. (16)

Figure 2 shows the motion trajectory governed by the dynamics of the dumbbell
satellite model (13)-(15). Recasting the second order equation as a first order system
and writing x and t rather than θ and E, respectively, the attitude of the dumbbell
satellite is described in the state space as

ẋ1 = x2, (17a)

ẋ2 = −3

2

sin (2x1)

1− ε cos t
+

ε sin t

1− ε cos t
x2 −

2ε
√
1− ε2 sin t

(1− ε cos t)2
. (17b)

In this case, x1 represents the attitude (angular motion) while x2 represents the angular
velocity of the dumbbell satellite.

4 Synchronization of Two Dumbbell Satellites

As seen in the previous section, the equations (17) govern the attitude dynamics of the
dumbbell satellite. Therefore, take the state vector as xT = [x1, x2] and define an energy
function as H(x) = 1

2x
T Ix where I is the 2×2 identity matrix. The system (17) can be

rewritten in its generalized Hamiltonian form, according to equation (6), so in this way
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the master dummbell satellite in generalized Hamiltonian form is given by

[

ẋ1

ẋ2

]

=
1

2

[

0 1
−1 0

]

∂H

∂x
+

1

2

[

0 1
1 0

]

∂H

∂x

+

[

0

− 3
2

sin(2x1)
(1−ε cos(t)) +

ε sin(t)
1−ε cos(t)x2 − 2ε

√
1−ε2 sin(t)

(1−ε cos(t))2

]

. (18)

If we select y = x1 as the output, then the J , S, and C matrices are given by

J =
1

2

[

0 1
−1 0

]

, S =
1

2

[

0 1
1 0

]

, C =
[

1 0
]

. (19)

From equation (19) it can be seen that the pair (C,S) is observable. Therefore the
observer for the system (18) according to equation (7) (slave dumbbell satellite) has the
following form

[

ξ̇1
ξ̇2

]

=
1

2

[

0 1
−1 0

]

∂H

∂ξ
+

1

2

[

0 1
1 0

]

∂H

∂ξ

+

[

0

− 3
2

sin(2y)
(1−ε cos(t)) +

ε sin(t)
1−ε cos(t)ξ2 −

2ε
√
1−ε2 sin(t)

(1−ε cos(t))2

]

+

[

k1
k2

]

(x1 − ξ1) , (20)

where k1 and k2 are the observer gains. If the synchronization error is defined as e (t) =
x (t)− ξ (t), then the dynamics of this error are described as

[

ė1
ė2

]

=
1

2

[

−k1 1 + k2
− (1 + k2) 0

]

∂H

∂e

+
1

2

[

−k1 1− k2
1− k2 0

]

∂H

∂e
+

[

0 0

0 ε sin(t)
1−ε cos(t)

]

∂H

∂e
. (21)

Next, we examine the stability of the synchronization error (21) between the mas-
ter dumbbel satellite (18) in Hamiltonian form and slave dumbbell satellite (20) state
observer. Invoking to Theorem 2.2, we have that

2

[

S − 1

2

(

KC + CTKT
)

]

< 0,

and
[

−2k1 1− k2
1− k2 0

]

< 0 (22)

by applying the Sylvester’s criterion – which provides a test for negative definiteness of a
matrix – thus, we have the mentioned 2× 2 matrix will be negative definite matrix, if we
choose k1 and k2 such that the condition (22) holds. In the following numerical results,
we have used k1, k2 > 0 to satisfy the stability condition (22).

5 Numerical Results

In this section, numerical results are reported for synchronization of the attitude and
angular velocity of two dumbbell satellites, by using generalized Hamiltonian forms and
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Figure 3: State attitudes x1(t), ξ1(t) (left) and state angular velocities x2(t), ξ2(t) (right) for
master and slave dumbbell satellites.
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Figure 4: Error dynamics of the attitude (left) and its angular velocity (right) for the numerical
simulation in Figure 3.

observer design (equations (18) and (20), respectively). Figure 3 shows the state trajec-
tories of master and slave satellites for the following values: initial conditions x1(0) = 10,
x2(0) = 4, ξ1(0) = 1, and ξ2(0) = 9, the eccentricity of the dumbell satellites ε = 0.3,
and the gains for slave satellite dumbbell k1 = k2 = 1.

The synchronization error dynamics between the master dumbbell satellite (18) and
its slave dumbbell satellite (20) are shown in Figure 4.

Figure 5 illustrates the synchronization between two dumbbell satellites xi vs ξi,
i = 1, 2.

6 Conclusion

In this paper, we have presented synchronization between two dumbbell satellites, in
particular for the attitude and for the angular velocity, from the perspective of generalized
Hamiltonian forms and state nonlinear observer design, an approach that has proven its



342 L.O. ARRIAGA-CAMARGO, R. MARTINEZ-CLARK ET AL.

ξ1

x 1

ξ2

x 2

Figure 5: Synchronization of two dumbbell satellites for xi vs ξi, i = 1, 2.

efficiency in the literature. The numerical results reported support the control laws
designed for attitude synchronization of two dumbbell satellites.

Attitude synchronization for satellites is intended to serve as a first control loop
for large array satellite missions; in which a large number of small satellites forms a
bigger system functioning as a whole for capabilities enhancement. Thus, in future, a
formation controller and the one presented above, can be used together for this type
of synchronization space missions with small dumbbell satellites, via synchronization
approach used in this paper.
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Abstract: This paper deals with fuzzy modeling and robust control of nonlinear
systems affected by bounded uncertainties. The proposed fuzzy model is composed
of two parts: a linear uncertain part and a nonlinear one. The linear uncertain part
is obtained by the nominal system linearization around some operating points. The
nonlinear part is approximated by a Takagi-Sugeno fuzzy system whose parameters
are estimated using the descent gradient method. A robust pole assignment called
‘pole colouring‘ is used for the system control. This strategy of control is synthe-
sized based only on the linear uncertain part of the decomposed model. Finally, two
simulation examples are treated to illustrate the effectiveness of the proposed fuzzy
modeling and control approaches.

Keywords: uncertain nonlinear system; fuzzy modeling; Takagi-Sugeno system;
linearization; robust pole assignment.

Mathematics Subject Classification (2010): 03B52, 62K25.

1 Introduction

The modeling of an uncertain nonlinear system is an important step for the system anal-
ysis and control. It consists in developing a mathematical model ensuring the required
accuracy and having a useful structure. In fact, a model must reproduce correctly the
dynamics of the considered system even in the presence of nonlinearities, uncertainties
and perturbations. These constraints make the classical modeling methods limited. So
the evolutionist techniques, such as fuzzy systems [1] and neural networks [2] are con-
sidered as potential solutions for this problem. Indeed, they are considered as universal
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approximators [3, 4]. So, they can reproduce any nonlinear dynamics with an arbitrary
accuracy.

In this paper, fuzzy systems are considered for nonlinear uncertain systems model-
ing. They are classified as intelligent modeling tools. A fuzzy system is described by
a set of IF-THEN fuzzy rules. According to fuzzy rules conclusions, two types of fuzzy
systems are distinguished: Mamdani fuzzy systems [5] and Takagi-Sugeno fuzzy ones [6].
Mamadani fuzzy systems present linguistic conclusions. However, Takagi-Sugeno fuzzy
systems possess numerical ones. Two types of fuzzy rules generation approaches are
distinguished: manual and analytic ones.

Takagi-Sugeno fuzzy systems are considered as powerful modeling tools [7]. Their pa-
rameters are often identified using training algorithms such as descent gradient method
[8–10], recursive least square algorithm [11], orthogonal least square algorithm [12], ge-
netic algorithms [13, 14] and robust algorithms [15, 16]. There are several works about
fuzzy modeling of nonlinear systems [17–20] and also uncertain ones [21, 22].

A real system is by nature uncertain. So, the use of classical control methods doesn′t
guarantee the desired performance indexes. In fact, when the system parameters move
from the nominal ones, the desired performances are not satisfied whence the necessity
of the use of a robust control where uncertainties are explicitly taken into account. In
the literature, there are several researches about the robust control such as the sliding
mode [23,24], the gain scheduling [25], the H2 performance [26], the H∞ performance [27]
and the robust tracking control [28, 29]. Also, there are some researches about robust
control for linear uncertain discrete-time systems such as robust pole assignment. It is an
interesting control method for linear uncertain systems. It consists of the location of the
closed-loop system poles by considering the parameters variations. Nurges [30] proposed
the location of the characteristic equation parameters in a stable polytope, also the
uncertainties effects on characteristic equation coefficients could be minimized [31–33].
The minimization of the maximum distance between desired poles and obtained ones was
proposed by Soylemez and Munro [34]. Discrete-time pole region was approximated by
linear matrix inequality for robust pole assignment control design [35, 36].

These robust control techniques could be combined with fuzzy logic tools to benefit
from those advantages [37–43]. For example Abid et al [37] used a robust fuzzy sliding
mode controller for nonlinear discrete-time systems with parametric uncertainties. Also,
Wu [38] proposed a robust H2 fuzzy controller for the same purpose.

In this paper, fuzzy modeling and robust pole assignment control for uncertain non-
linear systems are considered. The proposed model involves two parts: (1) a linear
uncertain one whose parameters are affected by bounded uncertainties and (2) a nonlin-
ear one which is approximated by a Takagi-Sugeno fuzzy system. The linear uncertain
part parameters are obtained by the nominal system linearization around some operat-
ing points. The Takagi-Sugeno fuzzy system synthesis needs two main phases: (1) the
premises variables determination and (2) the conclusions parameters estimation. In fact,
the premises variables determination consists essentially in input space partitioning and
the conclusions parameters are estimated using the descent gradient method.

The robust pole assignment control proposed by Soylemez and Munro [34] is consid-
ered for the control of nonlinear uncertain systems. It is synthesized based only on the
linear uncertain part of the developed fuzzy model. It consists in optimizing a cost func-
tion by varying the uncertain parameters. The nonlinear part of the model is supposed
to be an additive perturbation.

This paper is organized as follows. In Section 2, the problem statement is presented.
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The proposed fuzzy modeling approach is explained in Section 3. In Section 4, the used
robust pole assignment control is detailed. In Section 5, two simulation examples are
presented to illustrate the proposed modeling and control approaches. Finally, concluding
remarks are given in Section 6.

2 Problem Statement

Consider the modeling and control problems of the class of nonlinear uncertain systems
described by the following expression:

y(k + 1) = F [y(k), . . . , y(k − n+ 1), u(k), . . . , u(k −m+ 1), p], (1)

where u and y are the system input and the system output, respectively. F is a known
nonlinear function and p is a parameters vector affected by additive uncertainties.

p = p0 +∆p, (2)

where p0 is the nominal parameters vector and ∆p is the uncertainties vector affecting
the system.

The proposed modeling approach consists in dividing the behavior of the considered
uncertain nonlinear system into two parts: a linear uncertain one yl and a nonlinear one
ynl [44, 45]

ym(k + 1) = yl(k + 1) + ynl(k + 1), (3)

where ym is the model output.
This modeling approach needs two main steps:

• Step 1: the determination of the linear uncertain part parameters.

• Step 2: the approximation of the nonlinear part ynl by a Takagi-Sugeno fuzzy
system.

In this paper, a robust pole assignment control is used for the system control. It is syn-
thesized considering only the linear uncertain part yl of the model 3. The nonlinear part
ynl is considered as an additive perturbation. In the following, the proposed techniques
for the model development will be presented. Also, the used approach for robust pole
assignment control will be detailed.

3 Fuzzy Model Identification

In this section, the proposed fuzzy modeling approach is detailed. The system dynamics
is decomposed into two terms: a linear uncertain expression and a nonlinear one. It will
be compared with a global Takagi-Sugeno fuzzy model to demonstrate its interest.

3.1 Decomposed fuzzy model

The decomposed fuzzy model identification consists in determining the linear uncertain
part yl and estimating the nonlinear part ynl by a Takagi-Sugeno fuzzy system. For each
part computation, the structure and parameters determinations are necessary.
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3.1.1 Linear uncertain part

The first part yl is a linear expression with uncertain bounded parameters.

yl(k + 1) = −

n∑

i=1

aiu(k) y(k − i+ 1) +

m∑

j=1

bju(k) u(k − j + 1). (4)

For aiu and bju the index u indicates uncertain parameters. aiu,i = 1, n and bju,j = 1,m
are bounded uncertain parameters. It is to be noted that the coefficients aiu and bju
are obtained by the nominal system linearization around some operating points. In fact,
around an operating point (Ul,Yl) , the dynamics of the considered system is described
by the expression

δy(k + 1) = −
n∑

i=1

ail δy(k − i+ 1) +
m∑

j=1

bjl δu(k − j + 1), (5)

where

ail = −
∂y(k + 1)

∂y(k − i+ 1)
|(Ul,Yl), (6)

bjl =
∂y(k + 1)

∂u(k − j + 1)
|(Ul,Yl), (7)

δy(k − i+ 1) = y(k − i+ 1)− Yl, i = 1, n, (8)

δu(k − j + 1) = u(k − j + 1)− Ul, j = 1,m, (9)

l = 1, L,

L is the considered operating points number. Using the expressions (8) and (9), the
system dynamics is represented as follows:

y(k+1) = −

n∑

i=1

ail y(k− i+1)+

m∑

j=1

bjl u(k− j+1)+ (Yl +

n∑

i=1

ail Yl −

m∑

j=1

bjl Ul). (10)

So, the linear part yl is given by the expression

yl(k + 1) = −

n∑

i=1

ail y(k − i+ 1) +

m∑

j=1

bjl u(k − j + 1). (11)

The nominal system must be linearized around some operating points to describe the
dynamics of the considered nonlinear system for the global operating area. The operating
points must be chosen properly. In fact, they have to be distributed on the global
operating area. So, the obtained coefficients aiu,i = 1, n and bju,j = 1,m are bounded
uncertain parameters:

aiu ∈ [minl=1···L ail ; maxl=1···L ail], bju ∈ [minl=1···L bjl ; maxl=1···L bjl].

It is to be noted that the static terms (Yl +
∑n

i=1 ail Yl −
∑m

j=1 bjl Ul) will be taken
into account for the nonlinear part ynl synthesis.
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3.1.2 Nonlinear part

The nonlinear part ynl in the expression (3) is approximated by a Takagi-Sugeno fuzzy
system. It is described by a set of IF-THEN fuzzy rules having the following form:

if u(k) is A1
r · · ·and u(k −m+ 1) is Am

r and y(k) is B1
r · · ·and y(k − n+ 1) is Bn

r ,

then ynr(k + 1) = −

n∑

i=1

eri y(k − i+ 1) +

m∑

j=1

f r
j u(k − j + 1), (12)

where r = 1, R, R is the rules number. It is fixed after several simulations in order to
get a compromise between a minimal error and a reasonable rules number. Consider x

the premise variable vector such as: x = [u(k),. . ., u(k −m + 1), y(k),. . ., y(k − n + 1)].
The used membership function is the Gaussian

µr(xt) = exp[−
(xt − crt )

2

2(σr
t )

2
], t = 1, n+m. (13)

The dynamics of the nonlinear part ynl is described by the local models interpolation

ynl(k + 1) =

∑R
r=1 αr ynr(k + 1)

∑R

r=1 αr

, (14)

where

αr =

n+m∏

t=1

µr(xt). (15)

Consider θp = [crt , σ
r
t , r = 1, R, t = 1, n+m] the vector of the premises parameters of

the fuzzy system. crt and σr
t are, respectively, the center and the width of the Gaussian

function relating to the rth rule and the tth member of the premise variable vector x.
They are determined manually. In fact, the centers crt are determined by the operating
area partitioning and the widths σr

t are fixed such as there is neither discontinuity nor
overlapping between the membership functions. However, the vector of the conclusions
parameters is noted θc such as θc = [eri , f

r
j , r = 1, R, i = 1, n, j = 1,m]. The con-

clusions parameters are determined automatically. Indeed, they are estimated using the
descent gradient method. The criterion to minimize is given by the expression (16). It
is minimized through the minimization of the error corresponding to each example

Jc =

N∑

k=1

e(k), (16)

where

e(k) =
1

2
[ym(k)− y(k)]2, (17)

N is the size of the training data set.
The conclusions parameters are updated using the following expression

θc(τ) = θc(τ − 1)− ǫ
∂e(k)

∂ θc(τ − 1)
, (18)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (4) (2015) 344–359 349

where τ is the iteration counter and ǫ is the learning rate. ∂e(k)
∂ θc(τ−1) is given by the

expression
∂e(k)

∂ θc(τ − 1)
= [ym(k)− y(k)]

∂ynl(k)

∂ θc(τ − 1)
. (19)

It should be noted that the linear part has been designed referring only to the nominal
nonlinear system. So, the uncertain parameters must be taken into account for the design
of the nonlinear part ynl. It is done by varying these parameters to collect the training
and the validation data sets.

3.2 Global Takagi-Sugeno fuzzy model

The Takagi-Sugeno fuzzy systems are usually used for the nonlinear systems description.
They are described by a set of IF-THEN fuzzy rules having the following form:

if u(k) is A1
r · · ·and u(k −m+ 1) is Am

r and y(k) is B1
r · · ·and y(k − n+ 1) is Bn

r ,

then ymc
r (k + 1) = −

n∑

i=1

gri y(k − i+ 1) +
m∑

j=1

hr
j u(k − j + 1) (20)

with r = 1, R.
The membership function is the Gaussian (13). The premises variables and the rules

number are those used for the decomposed fuzzy model (3). The dynamic of the consid-
ered system is approximated by the local models interpolation

ymc(k + 1) =

∑R
r=1 αr y

mc
r (k + 1)

∑R

r=1 αr

, (21)

where αr is given by expression (15) and ymc is the global Takagi-Sugeno fuzzy model
output.

The conclusions parameters are adjusted using the descent gradient method. The
criterion to minimize is given by the expression (16) where e(k) is the following:

e(k) =
1

2
[ymc(k)− y(k)]2. (22)

The control of nonlinear uncertain systems (1) using the prescribed decomposed fuzzy
model (3) is considered. But, the control synthesis will be based only on the linear
uncertain part yl. Otherwise, the nonlinear part ynl will be considered as an additive
perturbation. In this case, the linear robust controllers as a robust pole assignment one
can be exploited.

4 Robust Pole Assignment Control

The robust pole assignment control proposed by Soylemez and Munro [34] is adopted
for the control of linear uncertain systems. It can be used for continuous-time and also
discrete-time linear systems affected by bounded uncertainties.

Consider a linear discrete-time system affected by bounded uncertainties and de-
scribed by the following transfer function

G(q−1) =
Bu(q

−1)

Au(q−1)
=

b1uq
−1 + · · · + bmuq

−m

1 + a1uq−1 + · · · + anuq−n
, (23)
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where bju ∈ [b−ju ; b+ju], j = 1,m and aiu ∈ [a−iu ; a+iu], i = 1, n.
The proposed controller is a PID one described by the expression

u(k) = u(k − 1) + q0 e(k) + q1 e(k − 1) + q2 e(k − 2), (24)

where

e(k) = yd(k)− y(k), (25)

yd is the desired output.
When using a PID controller (24), the closed-loop system has the characteristic equa-

tion (26) which is also affected by uncertain parameters

W (q−1, p) =
∑

i

Wi(p) q
−i, (26)

where p is the vector of uncertain parameters affecting the system.
The controller parameters θ are obtained through the minimization of the following

cost function

J = min
p

(Jp), (27)

θ = [q0; q1; q2]. (28)

There are multiple choices for the criterion Jp. It can be related to desired perfor-
mances like rise time, settling time · · · The simplest choice is the minimization of the
maximum distance between the nominal poles and the corresponding perturbed ones of
the closed-loop system. So, every pole takes one place in a disc centered on the corre-
sponding nominal pole

Jp = max
i=1···M

(|λ0
i − λ

p
i |), (29)

where λ0
i and λ

p
i are the nominal pole and its corresponding perturbed one of the closed-

loop system, respectively, M is the closed-loop system order. The controller synthesis
corresponds to an optimization problem which is solved using the function fminimax

from the Matlab toolbox.

5 Simulation Results

Two simulation examples are considered to show the effectiveness of the proposed mod-
eling approach and the performances of the suggested control scheme. The first example
is a chemical reactor and the second one is an academic system.

5.1 First example: Chemical reactor

Consider the modeling and the control problems of the chemical reactor [46] whose dy-
namics are described by the expression (30).

y(k + 1) = A1+B1 u(k)+A2 y(k) +q(k)B2 u
3(k)+A3 y(k − 1) u(k − 1) u(k), (30)

where [A1, A2, A3, B1, B2] = [0.558, 0.116, −0.034, 0.583, −0.127], q is an uncertain
parameter supposed to be variable and bounded in an interval: q(k) ∈ [0.9 ; 1.1], u is the
input flow of the product A and y is the concentration of the product B.
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Chemical reactionProduct A Product B

Figure 1: Chemical reactor.

5.1.1 Fuzzy modeling

The dynamics of the chemical reactor is decomposed as in equation (3). The linear
uncertain part yl is presented by the following expression

yl(k + 1) = −a1 y(k)− a2u(k) y(k − 1) + b1u(k) u(k) + b2u(k) u(k − 1). (31)

Since ∂y(k+1)
∂y(k) is constant, a1 is a certain parameter. a2u(k), b1u(k) and b2u(k)

are uncertain bounded parameters. They are obtained by the nominal system lin-
earization around two operating points: a1 = −0.116, a2u(k) ∈ [0.0014 ; 0.0218],
b1u(k) ∈ [0.3103 ; 0.5626] and b2u(k) ∈ [−0.0288 ; −0.0052].

The nonlinear part ynl in the expression (3) is presented by a set of IF-THEN fuzzy
rules:

if u(k) is A1
r and u(k − 1) is A2

r and y(k) is B1
r and y(k − 1) is B2

r

then ynr(k + 1) = −er1 y(k)− er2 y(k − 1) + f r
1 u(k) + f r

2 u(k − 1). (32)

The obtained modeling results for the training set are given in Figure 2.

Figure 2: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the training set.

The obtained results for the validation set are presented in Figure 3.
In order to compare the proposed fuzzy modeling method to the classical one, a global

Takagi-Sugeno fuzzy model will be developed. It is described by a set of IF-THEN fuzzy
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Figure 3: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the validation set.

rules

if u(k) is A1
r and u(k − 1) is A2

r and y(k) is B1
r and y(k − 1) is B2

r

then ymc
r (k + 1) = −gr1 y(k)− gr2 y(k − 1) + hr

1 u(k) + hr
2 u(k − 1). (33)

The conclusions parameters are estimated using the descent gradient method. The
rules number is R = 16 and the learning rate is ǫ = 0.5 . For both models, the same
system input and output partitioning are considered. In addition, the same training and
validation sets are used.

The average value of the error committed by each model is evaluated in the validation
set to demonstrate the effectiveness of the proposed modeling approaches

E =

∑N

k=1 |y(k)− ym(k)|

N
. (34)

Decomposed fuzzy model Global Takgi-Sugeno fuzzy model
J (final) 0.0008 0.0008

Iteration number 6462 13740
E 0.0046 0.0049

Table 1: Comparison between the decomposed fuzzy model and the global Takagi-Sugeno fuzzy
one.

According to this table, for the same criterion value the decomposed model requires
less iterations number than the classical one. It is due to the system dynamics decom-
position effect which accelerates the training.

5.1.2 Robust pole assignment control

The chemical reactor is controlled by the PID controller (24) whose parameters are
determined using the described robust pole assignment and referring only to the linear
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uncertain part (31) of the decomposed fuzzy model. The poles are located considering the
parameter uncertainties of this part. The objective is to have a double pole z1 = z2 = 0.2
and two poles such as z3 = 0.1 and z4 = 0.3. The controller parameters are obtained
through the minimization of the cost function (27). The results of the optimization
problem resolution are the following: q0 = 0.2303, q1 = 0.1906 and q2 = 0.0118 .

For the uncertain parameter variations given in Figure 4, the results of the proposed
control scheme are illustrated in Figure 5.

Figure 4: Evolution of the uncertain parameter q(k).

Figure 5: Evolution of the robust PID control action (a), desired output and system output
(b).

For the chosen desired signal and uncertain parameter variations, the closed-loop
system has acceptable performances.
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5.2 Second example

Consider the nonlinear uncertain system described by the following expression [47]:

y(k + 1) =
y(k) y(k − 1) y(k − 2) u(k) [y(k − 2)− 1− q(k)]

1+ y2(k − 1)+ y2(k − 2)
+

u(k)

1+ y2(k − 1)+ y2(k − 2)
,

(35)
where q is a bounded uncertain parameter such as: q(k) ∈ [0 ; 0.5], u and y are the
system input and output, respectively.

5.2.1 Fuzzy modeling

The dynamics of the above system is described by the decomposed model (3). The linear
uncertain part yl is presented by the expression

yl(k + 1) = −a1u(k) y(k)− a2u(k) y(k − 1)− a3u(k) y(k − 2) + b1u(k) u(k), (36)

where a1u(k) , a2u(k), a3u(k) and b1u(k) are uncertain bounded parameters. They are
obtained by the nominal system linearization around some operating points: a1u(k) ∈
[−0.0761 ; 0.4003], a2u(k) ∈ [−0.4386 ; 0] , a3u(k) ∈ [−0.3516 ; 0.0543] and b1u(k) ∈
[0.5924 ; 1].

The nonlinear part ynl in the expression (3) is described by a set of IF-THEN fuzzy
rules

if u(k) is A1
r and y(k) is B1

r and y(k − 1) is B2
r and y(k − 2) is B3

r

then ynr(k + 1) = −er1 y(k)− er2 y(k − 1)− er3 y(k − 2) + f r
1 u(k). (37)

The rules number is R = 16 and the learning rate is ǫ = 0.2. The obtained modeling
results for the training set are given in Figure 6.

Figure 6: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the training set.

The modeling results for the validation set are illustrated in Figure 7.
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Figure 7: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the validation set.

This system can be also approximated by a global Takagi-Sugeno fuzzy system com-
posed of a set of IF-THEN fuzzy rules having the following form:

if u(k) is A1
r and y(k) is B1

r and y(k − 1) is B2
r and y(k − 2) is B3

r

then ymc
r (k + 1) = −gr1 y(k)− gr2 y(k − 1)− gr3 y(k − 2) + hr

1 u(k). (38)

The descent gradient method is applied for the estimation of the conclusions param-
eters. The rules number is R = 16 and the learning rate is ǫ = 0.2. For both models, the
same membership functions are used.

Decomposed fuzzy model Global Takgi-Sugeno fuzzy model
J (final) 0.025 0.025

Iteration number 4121 10999
E 0.0066 0.0079

Table 2: Comparison between the decomposed fuzzy model and the global Takagi-Sugeno
fuzzy one.

According to this table, the decomposed fuzzy model is slightly more accurate and
requires less time for the parameters training. It is due to the system dynamics decom-
position.

5.2.2 Robust pole assignment control

The robust PID controller (24) is applied for the control of the system (35). The PID
parameters are computed using the prescribed robust pole assignment and referring only
to the linear uncertain part (36) of the decomposed fuzzy model. The objective is to
have a double pole z1 = z2 = 0.1 and a double pole z3 = z4 = 0.2. The resulted PID
parameters are the following ones: q0 = −0.5658, q1 = 1.2047 and q2 = −0.5586.

For the uncertain parameter evolution given in Figure 8, the obtained control results
are illustrated in Figure 9.
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Figure 8: Evolution of the uncertain parameter q(k).

Figure 9: Evolution of the robust PID control (a), desired output and system output (b).

The resulted closed-loop system is stable and the static error is equal to zero for the
chosen uncertain parameter values. But, the obtained results for the transient time are
poor. So, the proposed control method is limited to the guarantee of desired perfor-
mances. In addition, there is no guarantee for the closed-loop system stability. This
may be caused by neglecting the nonlinear part of the model. So, in future works this
control approach must be robustified and a stability study must be done to guarantee
the performance and stability robustness of the closed-loop uncertain nonlinear system.

6 Conclusions

This study has developed new modeling and control schemes for nonlinear systems af-
fected by bounded uncertainties. The proposed model consists in dividing the behavior
of the considered system into two parts: a linear uncertain part and a nonlinear one. The
used techniques for the system modeling have been explained. In fact, the linear uncer-
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tain part has been obtained by the nominal system linearization around some operating
points and the nonlinear part has been approximated by a Takagi-Sugeno fuzzy system
whose parameters are estimated using the descent gradient method. A robust pole as-
signment control for the considered nonlinear system has been synthesized based only
on the linear uncertain part of the decomposed fuzzy model. Two simulation examples
have been treated to demonstrate the effectiveness of the suggested modeling approach
and to experiment the proposed control scheme.
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1 Electrical Engineering Department, Process Control Laboratory LPC, National Polytechnic
School ENP, 10 Avenue Pasteur, B. P. 182 El - Harrach, 16000, Algiers, Algeria

2Department of Electrical, Research Laboratory in Electrical Engineering and Automatic
LREA, University of Medea, Ain D heb, 26001, Medea, Algeria

Received: January 7, 2015; Revised: November 2, 2015

Abstract: Due to their distinct advantages, the variable speed multi-phase drive
systems are seen as serious contender to the existing three-phase drives. However we
present in this work the modeling and control of matrix converter feeding a double
star induction machine. In order to achieve this goal we present the model of matrix
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using Matlab–Simulink. The results illustrate the proper functioning of the system.
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1 Introduction

To introduce an electric motor in high power applications, such as traction or marine
propulsion, it is often necessary to segment the power. To this end, we can intervene at
the converter level through multi-level techniques or parallel converters [7].

Another solution is to apply the segmentation level to the set converter-machine
using multiphase machines. Indeed, the total power is distributed over a larger number
of inverter arms, each of which is fed with a decreased power, which allows for a higher
switching frequency and a less important ripple current and torque [2, 11]. One of the
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most common examples of multiphase machines is the double star induction machine
(DSIM).

Such a machine has the advantage of reducing the electromagnetic torque ripples
and rotor losses significantly. The double star induction machine studied in this paper
is a machine that has two systems of coupled three-phase windings in the stator fixed
star and out of phase with each other at an γ (γ = 30◦) and a mobile rotor similar to
that of classical asynchronous machine. The two systems of stator phases are fed by
two sources of power frequency and amplitude equal but out of phase with each other
at an angle (δ = γ = 30◦). However, the machine AC (asynchronous) is traditionally
controlled by a PWM inverter control, an alternative is the matrix converter. The main
characteristics of MC are: Direct AC-AC polyphase power conversion, inherent bidi-
rectional power flow capability, input/output sinusoidal waveforms with variable output
voltage amplitude and frequency, input power factor control despite the load in the out-
put side and a simple and compact power circuit because of the elimination of bulky
reactive elements [1, 5, 6, 8]. Recently, the most popular control algorithm widely used
in matrix converters is space vector modulation (SVM) that allows input current and
output voltage to be independently controlled. The principal reason for this is the better
harmonic performance that can be achieved using different switching strategies in each
commutation period. Two versions for SVM are defined: the indirect modulation and
the direct one. In this work, we adopt the direct modulation (DSVM) which is realized
by asymmetrical switching strategy.

2 Modeling of the Double Star Asynchronous Machine

The DSIM consists of two three-phase windings in the stator shifted from each other by
an angle of 30◦ and one three-phase rotor winding. The two stator windings are fed by
two systems of voltage frequency and amplitude equal but out of phase with each other
at an angle (δ = γ = 30◦). The windings are shown in the following (Figure 1):

Figure 1: DSIM schema.

Park model of the double stator induction machines, with P pairs of poles, is defined
by the following equations system (1).
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[h]






Vsd1 = rs1isd1 +
dφsd1

dt
− ωsφsq1,

Vsq1 = rs1isq1 +
dφsq1

dt
− ωsφsd1,

Vsd2 = rs2isd2 +
dφsd2

dt
− ωsφsq2,

Vsq2 = rs2isq2 +
dφsq2

dt
− ωsφsd2,

0 = rrrrd +
dφrd

dt
− (ωs − ωr)φrq,

0 = rrrrq +
dφrq

dt
− (ωs − ωr)φrq.

(1)

The electromagnetic torque and speed are given by the following expressions (2):






Tem = p
Lm

Lm + Lr

[φrd(isq1 + isq2)− φrq(isd1 + isd2)],

J
dΩ

dt
= Cem − Cr −KfΩ.

(2)

3 Matrix Converter Fundamentals

Recently there has been considerable interest in the potential benefits of matrix con-
verter technology, especially for applications where size, weight, and long-term reliability
are important factors [8]. For a three-phase to three-phase implementation, the matrix
converter circuit consists of nine bidirectional switches so that any input line can be
connected to any output line for any given length of time. The matrix converter used in
the present work consists of two identical three-phase matrix converters. The schematic
diagram of the converter is shown in Figure 2.

Figure 2: Schematic diagram of matrix converter-DSIM.

Each matrix is driven by three phase voltages (VAk, VBk, VCk) where a power is phase-
shifted by 30◦ to each other, the double star induction motor load is connected to the
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output. The switching function of a switch SIjk is defined as (3):

SIjk =

{
1 swicths SIjk closed I = {A,B,C}, j = {a, b, c},
0 swicths SIjk closed

, k = {1, 2}. (3)

The mathematical expressions that represent the basic operation of the MC are obtained
applying Kirchhoff’s voltage and current laws to the switch array (4,5) [5, 6].



vak(t)
vbk(t)
vck(t)


 =



SAak(t) SBak(t) SCak(t)
SAbk(t) SBbk(t) SCbk(t)
SAck(t) SBck(t) SCck(t)


×




V (t)Ak

V (t)Bk

V (t)Ck


 , (4)




iAk(t)
iBk(t)
iCk(t)



 =




SAak(t) SAbk(t) SAck(t)
SBak(t) SBbk(t) SBck(t)
SCak(t) SCbk(t) SCck(t)



×




i(t)ak
i(t)bk
i(t)ck



 . (5)

where vak, vbk and vck (k = 1, 2) are the output phase voltages, and iAk, iBk and iCk

represent the input currents to the matrix. The output voltage is directly constructed
switching between the input voltages and the input currents are obtained in the same
way from the output ones. For these equations to be valid, the next expression (6) has
to be taken into consideration:

SAjk + SBjk + SCjk = 1, j = {a, b, c}, (k = 1, 2). (6)

What this expression says is that, at any time, one, and only one switch must be
closed in an output branch. If two switches were closed simultaneously, a short circuit
would be generated between two input phases. On the other hand, if all the switches in
an output branch were open, the load current would be suddenly interrupted and, due
to the inductive nature of the load, an over voltage problem would be produced in the
converter.

4 Space Vector Approach

4.1 Modulation of MC

The Space Vector Modulation for MC is based on the instantaneous space vector rep-
resentation of input currents and output voltages. SVM uses six sectors of the space,
namely 1 to 6. The valid switching states (27) are shown in Table 1 [9, 10].

The first 18 switching states of Table 1 represent the active vectors and determine
the output voltage vector vo and input current vector which are presented in Figure 3.

The magnitude of these vectors depends upon the instantaneous values of the input
current and output voltage. In these states any two output phases are connected to the
same input phase. The remaining six switching states represent the zero vectors and
each output phase is connected to a different input phase. Both the magnitude and the
phase of the resultant rotating vectors are variable in these states.

4.2 Direct space vector modulation algorithm

In principle, the SVM algorithm is based on the selection of four active configurations
which are applied for suitable time widths within each cycle period Tp. A zero config-
uration is then applied to complete Tp. At any cycle period, the output voltage vector
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Figure 3: Output voltage and input current space vector hexagons.

States Switches on | vo | ∠vo | ii | ∠ii
ABB +1 SAa SBb SBc +2/3VAB 0 +2/

√
3ia −π/6

BAA −1 SBa SAb SAc −2/3VAB 0 −2/
√
3ia −π/6

BCC +2 SBa SCb SCc +2/3VBC 0 +2/
√
3ia π/2

CBB −2 SCa SBb SBc −2/3VBC 0 −2/
√
3ia π/2

CAA +3 SCa SAb SAc +2/3VCA 0 +2/
√
3ia 7π/6

ACC −3 SAa SCb SCc −2/3VCA 0 −2/
√
3ia 7π/6

BAB +4 SBa SAb SBc +2/3VAB 2π/3 +2/
√
3ib −π/6

ABA −4 SAa SBb SAc −2/3VAB 2π/3 −2/
√
3ib −π/6

CBC +5 SCa SBb SCc +2/3VBC 2π/3 +2/
√
3ib π/2

BCB −5 SBa SCb SBc −2/3VBC 2π/3 −2/
√
3ib π/2

ACA +6 SAa SCb SAc +2/3VCA 2π/3 +2/
√
3ib 7π/6

CAC −6 SCa SAb SCc −2/3VCA 2π/3 −2/
√
3ib 7π/6

BBA +7 SBa SBb SAc +2/3VAB 4π/3 +2/
√
3ic −π/6

AAB −7 SAa SAb SBc −2/3VAB 4π/3 −2/
√
3ic −π/6

CCB +8 SCa SCb SBc +2/3VBC 4π/3 +2/
√
3ic π/2

BBC −8 SBa SBb SCc −2/3VBC 4π/3 −2/
√
3ic π/2

AAC +9 SAa SAb SCc +2/3VCA 4π/3 +2/
√
3ic 7π/6

CCA −9 SCa SCb SAc −2/3VCA 4π/3 −2/
√
3ic 7π/6

AAA 01 SAa SAb SAc 0 − 0 −
BBB 02 SBa SBb SBc 0 − 0 −
CCC 03 SCa SCb SCc 0 − 0 −

Table 1: Switching states and vectors used in DSVM.
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vo and the input current displacement angle ϕi are known as reference quantities. The
input voltage vector is known from measured source voltage, the control of ϕi can be
achieved controlling the phase angle βi of the input current vector (Figure 4).

The modulation algorithm is explained using Figure 5 [9] representing the vectors,
and ii lie in sector 1. The reference voltage vector vo is resolved into two components v

′

o

and v
′′

o along the two adjacent vectors. The v
′

o component is synthesized using their two
voltage vectors.

Figure 4: Modulation schema.

Figure 5: Modulation of the output voltage vectors and input current vectors.

The six switching states of v
′

o are ±7,±8,±9. Among the six possible switching states
(±7,±8,±9), the one that allows the modulation of the input current must be selected
i.e. ±7 and ±9. Here the switching state ±8 of v

′

o does not allow the modulation of the
input current vector because the reference input current vector has the switching states
of ±3,±6,±9 and ±1,±4,±7.

Therefore, the switching state ±8 is eliminated. From the remaining four switching
states (±7,±9), we assumed to apply the positive switching states +7 and +9. Similarly,
the switching states required to synthesize the v

′′

o component can be selected as +1
and +3. Here ±2 is eliminated. The reference current vector ii is resolved into two
components i

′

i and i
′′

i along the two adjacent vectors.

The i
′

i component is synthesized using their two current vectors. The six switching

states of i
′

i are ±3,±6,±9. Among the six possible switching states (±3,±6,±9), the
one that allows the modulation of the output voltage must be selected ±3 and ±6. Here
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the switching state ±6 of i
′

i does not allow the modulation of the output voltage vector
because the reference output voltage vector has the switching states of ±7,±8,±9 and
±1,±2,±3. Therefore, the switching state 6 is eliminated. From the remaining four
switching states (±3,±9), we assumed to apply the positive switching states as +3 and
+9. Similarly, the switching states required to synthesize the i

′′

i component can be
selected as +1 and +7. Here ±4 is eliminated.

Using the same procedure, it is possible to determine the four switches configurations
correspondent to any possible combination of output voltage and input current sectors,
which are quoted in Table 2 [10].

Ki

Kv 1 2 3 4 5 6

1 9 -7 -3 1 -6 4 9 -7 3 -1 -6 4 -9 7 3 -1 6 -4 -9 7 -3 1 6 -4

2 -8 9 2 -3 5 -6 -8 9 -2 3 5 -6 8 -9 -2 3 -5 6 8 -9 2 -3 -5 6

3 7 -8 -1 2 -4 5 7 -8 1 -2 -4 5 -7 8 1 -2 4 -5 -7 8 -1 2 4 -5

4 -9 7 3 -1 6 -4 -9 7 -3 1 6 -4 9 -7 -3 1 -6 4 9 -7 3 -1 -6 4

5 8 -9 -2 3 -5 6 8 -9 2 -3 -5 6 -8 9 2 -3 5 -6 -8 9 -2 3 5 -6

6 -7 8 1 -2 4 -5 -7 8 -1 2 4 -5 7 -8 -1 2 -4 5 7 -8 1 -2 -4 5

Duty δI δII δIII δIV δI δII δIII δIV δI δII δIII δIV δI δII δIII δIV δI δII δIII δIV δI δII δIII δIV

Table 2: Selection of active switching states for each combination of sector for output voltage
KV and input current KI .

The required modulation duty cycles for switching states δI , δII , δIII and δIV in the
last row of Table 2 are given below:

δI =
2√
3

VO

VI

cos(α̃− π
3
) cos(α̃− π

3
)

cos(ϕi)
,

δII =
2√
3

VO

VI

cos(α̃− π
3
) cos(α̃+ π

3
)

cos(ϕi)
,

δIII =
2√
3

VO

VI

cos(α̃+ π
3
) cos(α̃− π

3
)

cos(ϕi)
,

δIV =
2√
3

VO

VI

cos(α̃+ π
3
) cos(α̃+ π

3
)

cos(ϕi)
.

(7)

Equations (7) have a general validity. For any combination of the output voltage
sector Kv and the input current sector Ki (Table 2) provides the four switches configu-
rations to be used within the cycle period Tp and equations (7) give the correspondent
on-time ratios. In equations (7) the following angle limits apply:

−π

6
< α̃ <

π

6
, −π

6
< β̃ <

π

6
.

For the feasibility of the control algorithm, the sum of the four on-time ratios must
be lower than or equal to unity:

δI + δII + δIII + δIV < 1. (8)
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4.3 Asymmetric switching strategies

Switching strategies deal with the switching configuration sequence, that is, the order in
which the active and zero vectors are applied along the commutation period. The three
zero configurations produce two degrees of freedom in order to complete the zero state
switching time. In this paper one switching technique is simulated and analyzed: The
Asymmetrical SVM (ASVM). The ASVM uses only one of the three zero configurations in
the middle of the sequence so that minimum switch commutations are achieved between
one switching state and the next one. Using this technique the switching commutations
are up to 8 for each commutation period. In this way switching losses are minimized [5,6].

For example, considering both output voltage and input current reference vectors
located in sector 1 within their respective hexagons, it can be seen that these are the
only possible double-sided sequences that can be generated for ASVM techniques:

ACC-AAC-AAA-AAB-ABB |ABB-AAB-AAA-AAC-ACC

The zero configurations are obtained from Table 3 for ASVM:

iiref voref
(1,2,3,4,5 or 6)

1 or 4 AAA
2 or 5 BBB
3 or 6 CCC

Table 3: Zero configuration for ASVM.

5 Simulation Results

5.1 Performance of the association matrix converter induction motor double

star:

It directly feeds the induction machine double star by matrix converters. The simulation
departs for startup vacuum after the steady state was established; we apply a torque
load to the machine. The simulation results shown in Figure 6 represent the following
quantities:

• The electromagntique torque.

• The speed of DSIM.

• Flux (φrd ,φrq and φr).
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